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Abstract

Call Detail Records (CDR) are an important source of information in the study

of diverse aspects of human mobility. The accuracy of mobility information

granted by CDR strongly depends on the radio access infrastructure deploy-

ment and the frequency of interactions between mobile users and the network.

As cellular network deployment is highly irregular and interaction frequencies

are typically low, CDR are often characterized by spatial and temporal sparsity,

which, in turn, can bias mobility analyses based on such data. In this paper,

we precisely address this subject. First, we evaluate the spatial error in CDR,

caused by approximating user positions with cell tower locations. Second, we

assess the impact of the limited spatial and temporal granularity of CDR on the

estimation of standard mobility metrics. Third, we propose novel and effective

techniques to reduce temporal sparsity in CDR by leveraging regularity in hu-

man movement patterns. Tests with real-world datasets show that our solutions

can reduce temporal sparsity in CDR by recovering 75% of daytime hours, while

retaining a spatial accuracy within 1 km for 95% of the completed data.
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cellular networks, mobility, movement inference.

1. Introduction

Urbanization challenges the development and sustainability of city infras-

tructures in a variety of ways, and telecommunications networks are no excep-

tion. Understanding human habits becomes essential for managing the avail-

able resources in complex smart urban environments. Specifically, a number of5

network-related functions, such as paging [1], caching [2], dimensioning [3], or

network-driven location-based recommending systems [4] have been shown to

benefit from insights on movements of mobile network subscribers. More gen-

erally, the investigation of human mobility pattern has attracted a significant

attention across disciplines [5–9].10

Motivation: Human mobility studies strongly rely on actual human footprints,

which are usually provided by spatiotemporal datasets, as a piece of knowledge

to investigate human mobility patterns. In this context, using specialized spatio-

temporal datasets such as GPS logs seems to be a direct solution, but there is

a huge overhead of collecting such a detailed dataset at scale. Hence, Call De-15

tail Records (CDR) have been lately considered as a primary source of data for

large-scale mobility studies. CDR contain information about when, where and

how a mobile network subscriber generates voice calls and text messages, and

are collected by mobile network operators for billing purposes. These records

usually cover large populations [10], which makes them a practical choice for20

performing large-scale human mobility analyses.

CDR can be regarded as footprints of individual mobility and can thus be

used to infer visited locations, to learn recurrent movement patterns, and to

measure mobility-related features. Despite the significant benefits that CDR

bring to human mobility analyses, an indiscriminate use of CDR may question25

the validity of research conclusions. Indeed, CDR have limited accuracy in the

spatial dimension (as the user’s location is known at a cell sector or in a base

station level) and the temporal dimension (since the device’s position is only
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recorded when it sends or receives a voice call or text message). This is a severe

limitation, as a cell (sector) typically spans thousands of square meters at least,30

and even a very active mobile network subscriber only generates a few tens of

voice or text events per day. Overall, CDR are characterized by spatiotemporal

sparsity, and understanding whether and to what extent such sparsity affects

mobility studies is a critical issue.

Existing studies and limitations: A few previous works have investigated the35

validity of mobility studies based on CDR. An influential analysis [6] observed

that using CDR allows to correctly identify popular locations that account for

90% of each subscriber’s activity; however, biases may arise when measuring

individual human mobility features. Works such as [6] or the later [11] dis-

cussed biases introduced by the incompleteness of positioning information, i.e.,40

the fact that CDR do not capture every location a user has travelled through.

Nevertheless, another important bias of CDR, caused by the use of cell tower

locations of mobile network subscribers in their footprints instead of their actual

positions, has been overlooked in the literature.

Another open research problem is that of completing spatiotemporal gaps45

in CDR. The most intuitive solution is to consider that the location in an entry

of CDR stays representative for a time interval period (e.g., one hour) centered

on the actual event timestamp [7, 12]. So far and to the best of our knowl-

edge, no more advanced solution has been proposed in the literature to fill the

spatiotemporal gaps in CDR.50

Our work and contributions: In this paper, we explore the following research

questions. First, we investigate how the spatiotemporal sparsity of CDR affects

the accuracy and incompleteness of mobility information, by leveraging CDR

and cell tower deployments in metropolitan areas. Second, we evaluate the

biases caused by such spatiotemporal sparsity in identifying important locations55

and measuring individual movements. Third, we study the capability of CDR

of locating a user continuously in time, i.e., the degree of completeness of the

data. Answering these questions leads to the following main contributions:
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• We show that the geographical shifts, caused by the mapping of user

locations to cell tower positions, are less than 1 kilometer in the most of60

cases (i.e., 85%−95% in the entire country or over 99% in the metropolitan

areas in France), and the median of the shifts is around 200− 500 meters

(varying across cellular operators). This result substantiates the validity

of many large-scale analyses of human mobility that employ CDR.

• We provide a confirmation of previous findings in the literature regarding65

the capability of CDR to model individual movement patterns: (1) CDR

provides the limited suitability for the assessment of the spread of human

mobility and the study of short-term mobility patterns; (2) CDR yield

enough details to detect significant locations in users’ visiting patterns

and to estimate the ranking among such locations.70

• We implement different techniques for CDR completion proposed in the

literature and assess their quality in the presence of ground-truth GPS

data. Our evaluation sheds light on the quality of the results provided by

each approach.

• We propose original CDR completion approaches that outperform existing75

ones, and carry out extensive tests on their performance with substantial

real-world datasets collected by mobile network operators and mobility

tracing initiatives. Validations against ground-truth movement informa-

tion of individual users show that, on average, our proposed adaptive tech-

niques can achieve an increased temporal completion of CDR data (75%80

of daytime hours) and retain significant spatial accuracy (having errors

below 1 km in 95% of completed time). Compared with the most common

proposal in the literature, our best adaptive approach outperforms by 5%

of accuracy and 50% of completion.

The rest of the paper is organized as follows. Related works are introduced85

in Sec. 2. In Sec. 3, we present the datasets used in our study. In Sec. 4, we

introduce and explore the biases of using CDR for human mobility analyses.
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In Sec. 5, we discuss the rationale for CDR completion and errors introduced

by common literature related approaches. In Sec. 6 and 7, we describe original

CDR completion solutions that achieve improved accuracy, during nighttime90

and daytime, respectively. Finally, Sec. 8 concludes the paper.

2. Related works

Our work aims at measuring and evaluating possible biases induced by the

use of CDR. Understanding whether and to what extent these biases affect hu-

man mobility studies is a subject that has been only partly addressed. The early95

paper by Isaacman [13] unveiled that using CDR as positioning information may

lead to a distance error within 1 km compared to ground-truth collected from

5 users. In a seminal work, Ranjan et al. [6] showed that CDR are capable

of identifying important locations, but they can bias results when more com-

plex mobility metrics are considered; the authors leveraged CDR of very active100

mobile network subscribers as ground-truth. In our previous study [14], we con-

firmed these observations using a GPS dataset encompassing 84 users. In the

present work, we confirm the observation in [6], and push them one step further

by also considering the spatial bias introduced by CDR. For the sake of com-

pleteness, we mention that results are instead more promising when mobility is105

constrained to transportation networks: Zhang et al. [11] found CDR-based in-

dividual trajectories to match reference information from public transport data,

i.e., GPS logs of taxis and buses, as well as subway transit records.

Also relevant to our study are attempts at mitigating the spatiotemporal

sparsity of CDR through completion techniques. The legacy approach in the110

literature consists in assuming that a user remains static from some time before

and after each communication activity. The span of the static period, which we

will refer to as temporal cell boundary hereinafter, is a constant system param-

eter that is often fairly arbitrary [12, 14]. In this paper, we extend previously

proposed solutions [14, 15], and introduce two adaptive approaches to complete115

subscribers’ trajectories inferred from CDR.
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3. Datasets

We leverage two types of datasets in our study. Coarse-grained datasets

are typical CDR data and feature significant spatiotemporal sparsity as well as

user locations mapped to cell tower positions. Fine-grained datasets describe120

the mobility of the same user populations in the coarse-grained datasets with a

much higher level of details and spatial accuracy. The coarse-grained datasets

are treated as CDR in our experiments, while the corresponding fine-grained

datasets are used as ground-truth to validate the results.

We have access to one coarse-grained (CDR) and three fine-grained (Internet125

flow, MACACO, and Geolife) datasets. The CDR and Internet flow datasets

share the same set of subscribers, and thus represent a readily usable pair of

coarse- and fine-grained datasets. Coarse-grained counterparts of the MACACO

and Geolife datasets are instead artificially generated, by downsampling the

original fine-grained data. The exact process is detailed in Sec. 3.5.130

As a result, we have three pairs of fine- and coarse-grained datasets. The

following sections describe each dataset in detail.

3.1. CDR coarse-grained dataset

This dataset consists of actual Call Detail Records (CDR), i.e., time-stamped

and geo-referenced logs of network events associated to voice calls placed or135

received by mobile network subscribers. Specifically, each record contains the

hashed identifiers of the caller and the callee, the call duration in seconds, the

timestamp for the call time and the location of the cell tower to which the caller’s

device is connected to when the call was first started. The CDR are collected by

a major cellular network operator. They capture the communication activities140

of 1.6 million of users over a consecutive 3-month period in 20151, resulting in

681 million CDR in the selected period of study.

1Due to a non-disclosure agreement with the data owner, we cannot reveal the geographical

area or the exact collecting period of this dataset.
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Figure 1: Distributions of the inter-event time in the CDR dataset at different day times.

We carry out a preliminary analysis of the CDR dataset, by extracting the

experimental statistical distributions of the inter-event time (i.e., the time be-

tween consecutive events). These distributions will be later leveraged in Sec. 3.5145

to downsample the fine-grained datasets. The resulting cumulative distribution

functions (CDF) are shown, for different hours of the day, in Fig. 1. We observe

that a majority of events occur at a temporal distance of a few minutes, but

a non-negligible amount of events are spaced by hours. This observation con-

firms results in the literature on the burstiness of human digital communication150

activities, with rapidly occurring events separated by long periods of inactiv-

ity [16]. The curves in Fig. 1 allow appreciating the longer inter-event times

during low-activity hours (e.g., midnight to 6 am) that become progressively

shorter during the day.

3.2. Internet flow fine-grained dataset155

This dataset is composed of mobile Internet session records, termed flows

in the following. These records are generated and stored by the operator ev-

ery time a mobile device establishes a TCP/UDP session for certain services
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Figure 2: (a) CDF of the inter-event time in the Internet flow fine-grained dataset; (b) CDF

of the number of records (flows or CDR) per user in a weekend and a weekday.

(i.e., Facebook, Google Services, WhatsApp etc). Each flow entry contains the

hashed device identifier, the type of service, the volume of exchanged upload160

and download data, the timestamps denoting the starting and ending time of

the session, and the location of the cell tower handling the session. The dataset

refers to two-day period consisting of a Sunday and a Monday in 2015. In each

day, the data covers a constant time interval, i.e., from 10 am to 6 pm.

The flows in the Internet flow dataset have a considerably higher time gran-165

ularity than the original CDR. Namely, at least one flow (i.e., one location) is

provided within every 20 minutes, for all users. The statistical distribution of

the per-user inter-flow time is shown in Fig. 2(a). We note that in 98% of cases,

the inter-event time is less than 5 minutes, and in less than 1% of cases, the

inter-event time is higher than 10 minutes. We also plot in Fig. 2(b) the CDF of170

the number of flows (solid lines) and CDR (dashed lines) for each user appearing

in both datasets: the number of events per user in the Internet flow case is more

than two orders of magnitude larger than that observed in the CDR case. We

conclude that the Internet flows represent a suitable fine-grained dataset that

can be associated to the coarse-grained CDR dataset.175

Tab. 1 summarizes the number of users in the Internet flow dataset. In

particular, the over 10K and 14K subscribers recorded on Sunday and Monday,
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Table 1: Overview of the Internet Flow Dataset

Day of the week Users Rare CDR users Frequent CDR users

Sunday 10, 856 6, 154 4, 702

Monday 14, 353 7, 215 7, 138

respectively, are separated into two similarly sized categories based on their

CDR as follows:

• Rare CDR users are not very active in placing or receiving voice calls180

and thus have limited records in the CDR dataset. As in [7], we use the

threshold of 0.5 event/hour below which the user is considered to belong

to this category.

• Frequent CDR users are more active callers or callees and have more than

0.5 event/hour in the CDR dataset.185

This distinction will be leveraged later on in our performance evaluation.

3.3. MACACO fine-grained dataset

This dataset is obtained through an Android mobile phone application,

MACACOApp2, developed in the context of the EU CHIST-ERA MACACO

project [17]. The application collects data related to the user’s digital activi-190

ties such as used mobile services, generated uplink/downlink traffic, available

network connectivity, and visited GPS locations. These activities are logged

with a fixed periodicity of 5 minutes. We remark that this sampling approach

differs from those employed by popular GPS tracking projects, such as MIT

Reality Mining [18] or GeoLife [4], where users’ positions are sometimes irreg-195

ularly sampled. With respect to such previous efforts, the regular sampling in

MACACO data grants a neater and more comprehensive overview of a user’s

movement patterns. The MACACO data covers 84 users who have stayed in 6

2Available at https://macaco.inria.fr/MACACOApp/.
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different countries and travel worldwide. The data collection spans 18 months

approximately, from July 10, 2014, to February 4, 2016.200

3.4. Geolife fine-grained dataset

This is the latest version of the Geolife dataset [4], which provides time-

stamped GPS locations of 182 individuals, mostly in Beijing [4]. The dataset

spans a three-year time period, from April 2007 to August 2012. Unfortunately,

the Geolife dataset is often characterized by large temporal gaps between sub-205

sequent data records. As a result, not all users present a number of locations or

mobility level sufficient to our analysis. We thus select users given the criteria

that the entropy rate of each individual’s data points falls below the theoretical

maximum entropy rate, which are used in [19] to select the Geolife users for

analyzing individual human mobility.210

3.5. Generating coarse-grained equivalents for MACACO and Geolife

We do not have access to CDR datasets for users in the MACACO nor Geolife

datasets. We thus generate CDR-equivalent coarse-grained datasets, by lever-

aging the experimental distributions of the inter-event time in the CDR dataset

(shown in Fig. 1, cf. Sec. 3.1). Specifically, we downsample the MACACO and215

Geolife datasets so that the inter-event times match those in the experimental

distributions. Therefore, we first randomly choose one GPS record of the user as

the seed CDR entry. We then randomly choose an inter-event time value from

the distribution for the corresponding hour of the day, and use such interval to

sample the second GPS record for the same user, mimicking a new CDR en-220

try. We repeat this operation through the whole fine-grained trajectories of all

users, and obtain datasets of downsampled GPS records that follow the actual

inter-event time distributions of CDR.

Note that tailoring the inter-event distribution on a specific hour of the day

allows taking into account the daily variability of CDR sampling. Also, upon225

downsampling, we filter out users who have an insufficient number of records,

i.e., users with less than 30 records per day on average or less than 3 days
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Figure 3: Combinations of corresponding coarse- and fine-grained datasets.

of activity. The final CDR-like coarse-grained versions of the MACACO and

Geolife datasets contain 32 and 42 users, respectively.

3.6. Summary230

By matching or downsampling the original data, we obtain three combi-

nations of coarse-grained and fine-grained datasets for the same sets of users.

Fig. 3 outlines them.

An important remark is that, as already mentioned in Sec. 3.2, the Internet

flow dataset only covers working hours, from 10 am to 6 pm. As a result, the235

first data combination is well suited to the investigation of CDR completion

during daytime. The relevant analysis is presented in Sec. 7.

The second and third data combinations, issued from the MACACO and

Geolife datasets, cover instead all times. We thus employ them to overcome the

limitations of the CDR and Internet flow pair, and to study CDR completion240

during night hours. Details are provided in Sec. 6.

4. Biases in CDR-based mobility analyses

Before delving into CDR completion, we present an updated analysis of the

suitability of CDR data for the characterization of human mobility. Indeed, as

anticipated in Sec. 1, CDR are typically sparse in space and time, which may245

affect the validity of results obtained from CDR mining.
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Figure 4: Deployment of cell towers in the target metropolitan area. Purple dots represent

the base stations, whose coverage is approximated by a Voronoi tessellation.

4.1. Cell tower locations

In most CDR datasets, the position information is actually represented by

the cell tower location handling the corresponding communication. Hence, a

shift from the user’s actual location to the cell tower location always exists in250

every CDR entry. Such a shift may impact the accuracy of individual mobil-

ity measurements. Usually, CDR are collected in metropolitan areas. In this

case, the precision of human locations provided by CDR is related to the local

deployment of base stations. Fig. 4 shows the deployment of cell towers in the

metropolitan area where our CDR dataset was collected. The presence of cell255

towers is far from uniform, with a higher density in downtown areas where a

cell tower covers an approximately 2 km2 area on average: in these cases, the

cell coverage grants a fair granularity in the localization of mobile network sub-

scribers. The same may not be true for cells in the city outskirts, which cover

areas of several tens of km2.260

We evaluate how the cell deployment can bias human mobility studies. To
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Figure 5: Distributions of the distances to the nearest cell tower (shifts), for 718, 987 GPS

locations in the MACACO data of users in (a) the whole area and (b) major metropolitan

areas (Paris Region, Lyon, Toulouse) in France.

this end, we perform a quantitative analysis of spatial shifts introduced by CDR

positioning information by leveraging GPS logs in the MACACO dataset. Our

focus on the MACACO dataset is due to two reasons: (i) the Internet flow

and CDR datasets lack GPS information of visited locations or only provide265

cellular-level information of visited locations of their users; (ii) no available

reliable source allows the extraction of cell tower information (i.e., coordinates

or covered area of deployed cell towers) in the area of Beijing that the Geolife

users are mainly from.

We first extract 718, 987 GPS locations in the mainland of France3 from the270

MACACO dataset. Among these locations, 74% are collected from the major

metropolitan areas in France, including Paris Region, Lyon, and Toulouse. We

then extract cell tower locations of the four major cellular network operators

in France (i.e., Orange, SFR, Free, and Bouygues) from the open government

data [20].275

Fig. 5(a) is the CDF of the distance between each GPS location in the

3The study focuses on the area in the latitude and longitude ranges of (43.005, 49.554) and

(−1.318, 5.999), respectively.
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MACACO dataset and its nearest cell tower. We observe that most of the loca-

tions have a distance below 1 km when shifting to their nearest cells (i.e., 95%

for Orange, 91% for SFR, 86% for Free, and 91% for Bouygues). Nevertheless,

when we focus on the metropolitan areas as shown in Fig. 5(b), almost all the280

shifts (i.e., over 99%) are below 1 km and all the operators have their median

shifts around 200 − 500 meters. This indicates that the shifts above 1 km are

all observed in rural areas. Still, most of the shifts are higher than 100 meters,

indicating the presence of some bias of using cell tower locations. We stress

that these values provide an upper bound to the positioning error incurred by285

CDR, as mobile network subscribers may be associated to antennas that are not

the nearest ones, due to the signal propagation phenomena or load balancing

policies enacted by the operator.

Still, the level of accuracy in Fig. 5, although far from that obtained from

GPS logs, is largely sufficient for a variety of metropolitan-level or inter-city290

mobility analyses. For instance, it was shown that a spatial resolution of 2−7 km

is sufficient to track the vast majority of mobility flows in a large dual-pole

metropolitan region [21].

4.2. Human movement span

We then examine whether mining CDR data is a suitable means for measur-295

ing the geographical span of movement of individuals. For that, we compute for

each user u in the set of study U the radius of gyration, i.e., the deviation of the

user’s positions to their centroid. Formally, Rug =
√

1
n

∑n
i=1 ||rui − rucentroid||2geo,

where rucentroid is the center of mass of locations of the user u, i.e., rucentroid =

1
n

∑n
i=1 r

u
i . This metric reflects how widely the subscribers move and is a pop-300

ular measure used in human mobility studies [3, 5, 7, 22]. An individual who

repeatedly moves among several fixed nearby locations still yields a small radius

of gyration, even if she may total a large traveled distance.

We are able to compute both estimated (due to the temporal sparsity of the

actual or the equivalent CDR data) and real (due to the finer granularity in the305

ground-truth provided by the Internet flow, MACACO, and Geolife datasets)
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Figure 6: (a) CDF of the radius of gyration of two categories (Rare and Frequent) of CDR

users in the Internet flow dataset. (b)(c)(d) CDF of the distance between the real and the

estimated radius of gyration from CDR over the users of the (b) Internet flow, (c) MACACO,

and (d) Geolife datasets.
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radius of gyration for each user. Fig. 6 summarizes the results.

Let us first consider the users of the Internet flow dataset and their radii of

gyration. Three curves denote different cases: all, rare, and frequent CDR users

(cf. Sec. 3.2). The associated radius of gyration CDF are portrayed in Fig. 6(a).310

The three distributions are quite similar, indicating that one can get a reliable

distribution of Rug from a certain number of users even if they are rare CDR

users, i.e., have a limited number of mobile communication activities.

When considering the error between real and estimated radius of gyration,

in Fig. 6(b) for the CDR and Internet flow datasets, and in Fig. 6(c) and 6(d)315

for the MACACO or Geolife datasets, respectively, we observe the following:

• The distribution of large errors is similar in all cases, and outlines a decent

accuracy of the coarse-grained CDR or CDR-like datasets. For approxi-

mately 90% of the Internet flow users, 95% of the MACACO users and

70% of the Geolife users, the errors between the real and the estimated320

radius of gyration are less than 5 km. The higher errors obtained from Ge-

olife dataset may be interpreted by the irregular sampling in the original

data and the presence of very large gaps between consecutive logs.

• A more accurate radius of gyration can be obtained for the CDR users

who are especially active: 92% of the frequent CDR users have their errors325

lower than 5 km, while the percentage decreases to 86% for the rare CDR

users.

• When considering small errors, the distributions tend to differ, with far

lower errors in the case of CDR than MACACO or Geolife. This is in fact

an artifact of considering cell tower locations as the ground-truth user330

positions in the fine-grained Internet flow dataset (cf. Sec. 4.1). In the

more accurate GPS data of MACACO and Geolife, around 30% and 10%

of the users enjoy their errors lower than 100 meters, while around 35%

of the users in the CDR dataset have errors below 1 meter.

Overall, these results confirm the previous findings on the limited suitability335
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of CDR for the assessment of the spread of human mobility [6]. They also unveil

how different datasets can affect the data reliability at diverse scales.

4.3. Missing locations

Due to spatiotemporal sparsity, the mobility information provided by CDR

is usually incomplete. We investigate the phenomenon in the case of users in the340

CDR dataset, and plot in Fig. 7(a) the ratio rNL
of unique locations detected

from CDR (NCDR
L ) to those from the ground-truth (NFlow

L ), i.e., Internet flow

data, as

rNL
= NCDR

L /NFlow
L . (1)

We notice that 42% in the population of study (i.e., all users) have their rNL

higher than 0.8. For these users, 80% of their unique visited locations appear345

in the CDR data. The percentage of all users having this criterion is slightly

higher for the frequent CDR users (50%) and lower for the rare CDR users

(37%). These results confirm that using CDR to study very short-term mobility

patterns is not a good idea due to the high temporal sparsity and the lack of

locations in CDR.350

4.4. Important locations

The identification of significant places where people live and work is generally

regarded as an important step in the characterization of human mobility. Here,

we focus on home and work locations: we separate the period of study into two

time windows, mapping to work time (9 am to 5 pm) and night time (10 pm to355

7 am) for both CDR-like and ground-truth datasets. For each user, the places

where the majority of work time records occur are considered a proxy for work

locations; the equivalent records at night time are considered a proxy for home

locations [23]. It is worth noting that, as the Internet flow dataset covers only

(10am, 6pm), we only infer work locations for this dataset.360

Formally, let us consider a user u from the user set. The visiting pattern of

the user u is a sequence of samples
{

(`1u, t
1
u), . . . , (`nu, t

n
u)
}

, where the i-th sample

(`iu, t
i
u) denotes the location `iu where the user u is recorded at time tiu. The
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Figure 7: (a) CDF of the radio rNL
of the number of locations in each user’s coarse-grained

trajectory to the one in her fine-grained trajectory. (b)(c)(d)(e)(f) CDF of the distances

between each user’s real and estimated important locations located by her CDR and ground-

truth: (b) work locations over the Internet flow users; (c) home and (d) work locations over

the MACACO users; (e) home and (f) work locations over the Geolife users.
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home location `Hu of the user u is then defined as the most frequent location

during night time:365

`Hu = mode(`iu | tiu ∈ tH), (2)

where tH is the night time interval. The definition is equivalent for the work

location `Wu of the user u, computed as

`Wu = mode(`iu | tiu ∈ tW ), (3)

where tW is the work time interval.

We use the definitions in (2) and (3) to determine home and work loca-

tions and then evaluate the accuracy of the CDR-based significant locations by370

measuring the geographical distance that separates them from the equivalent

locations estimated via the corresponding fine-grained ground-truth datasets.

The results are shown in Fig. 7(b)-(f) as the CDF of the spatial error in the

position of home and work places for different user groups for the three datasets.

We observe the following:375

• The errors related to home locations are fairly small in the MACACO

dataset, but are relatively higher in the Geolife dataset. For the MACACO

users, the errors are always below 1 km and 94% are within 100 meters.

For the Geolife users, we observe that 17% of the errors are higher than

10 km. A possible interpretation is that some Geolife users are highly380

active and don’t stay within a stable location during nighttime.

• For both MACACO and Geolife users, the errors associated with work

locations are sensibly higher than those measured for home locations. For

instance, as shown in Fig. 7(d), while 75% of the MACACO users have an

error of less than 300 meters, the work places of a significant portion of385

individuals (around 12%) are identified at a distance higher than 10 km

from the positions extracted from the GPS data. A close behavior can

be noticed from the Internet flow and Geolife users, as shown in Fig. 7(b)

and Fig. 7(f). These large errors typically occur for users who do not seem
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to have a stable work location and may be working in different places390

depending on, e.g., the time of day.

• The errors are significantly reduced when using cell tower locations as

in the Internet flow dataset instead of actual GPS positions as in the

MACACO or Geolife datasets. For the Internet flow users in Fig. 7(b),

the errors between the real and the estimated significant locations are null395

for approximately 85% of all users, indicating that the use of the coarse-

grained dataset is fairly sufficient for inferring these significant locations.

• The errors are non-null for the remaining Internet flow users (15%). Among

them, 10% have relatively small errors (less than 5 km), while 5% have

errors larger than 5 km.400

• There is only a slight difference in the distribution of the errors associated

with work locations between the rare and the frequent CDR users as shown

in Fig. 7(b). The reason is that, most of CDR are generated in significant

locations, and hence the most frequent location obtained from CDR of a

user is likely to be her actual work location during daytime. Still, it is405

relatively difficult to capture actual location frequencies if a user has only

a few of CDR. Hence the rare CDR users have higher errors.

Overall, these results confirm previous findings [6], and further prove that

CDR yield enough details to detect significant locations in users’ visiting pat-

terns. Besides, the results reveal a small possibility of incorrect estimation in410

the ranking among such locations.

5. Current approaches to CDR completion

The previous results confirm the quality of mobility information inferred

from CDR, regarding the span of user’s movement and significant locations.

They also indicate that some biases are present: specifically, although transient415

and less important places visited may be lost in CDR data, capturing most

of one’s historical locations is not impossible. The good news is that, even in
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those cases, the error induced by CDR is relatively small. A major issue remains

that CDR only provide instantaneous information about user’s locations at a few

time instants over a whole day. Overcoming the problem would help the already420

significant efforts in mobility analyses with CDR [10], allowing the exploration

of scales much larger than those enabled by GPS datasets.

Temporal CDR completion aims at filling the time gaps in CDR, by estimat-

ing users’ locations in between their mobile communication activities. Several

strategies for CDR completion have been proposed to date. In this section, we425

introduce and discuss the two most popular solutions adopted in the literature.

5.1. Baseline static solution

A simple solution is to hypothesize that a user remains static at the same

location where she is last seen in her CDR. This methodology is adopted, e.g.,

by Khodabandelou et al. [24] to compute subscriber’s presence in mobile traffic430

meta-data used for population density estimation. We will refer to this approach

as the static solution and will use it as a basic benchmark for more advanced

techniques. It is worth noting that this solution has no spatiotemporal flexibil-

ity; its performance only depends on the number of CDR a user generates in

the period of study: i.e., the higher is the number of CDR, the lower will be435

the spatial error in the completed data by the static solution. In other words,

there is no space (configurable setting or initial parameter) for customizing this

solution to obtain better accuracy.

5.2. Baseline stop-by solution

Building on in-depth studies proving individuals to stay most of the time440

in the vicinity of their voice call places [25], Jo et al. [26] assume that users

can be found at the locations where they generate some digital activities for

an hour-long interval centered at the time when each activity is recorded. If

the time between consecutive activities is shorter than one-hour, the inter-event

interval is equally split between the two locations where the bounding events445

occur. This solution will be denoted as stop-by in the remaining sections.
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Figure 8: An example of a temporal cell boundary in the stop-by approach: A period (tCDR−

|d|/2, tCDR + |d|/2) is given as a temporal cell boundary at the cell C attached with a CDR

entry at time tCDR. In this temporal cell boundary, the user is assumed to be at the cell C,

while actually she moves from the cell B to D: this leads to a spatial error.

The drawback of the stop-by is that it uses a constant hour-long interval

for all calls as well as users in CDR, which may be not always suitable. This

solution lacks flexibility in dealing with various human mobility behaviors. As

exemplified in Fig. 8, a single CDR is observed at time tCDR at cell C. Following450

the stop-by solution, the user is considered to be stable at this cell C during

the period d = (tCDR − |d|/2, tCDR + |d|/2), while in fact the user has moved

to two other cell towers during this period. We call the period estimated from

an instant CDR entry, a temporal cell boundary. In the example of Fig. 8, this

temporal cell boundary is overestimated.455

Nevertheless, this solution has more flexibility than the static solution does,

i.e., the time interval |d| affects its performance and is configurable. Although a

one-hour interval (|d| = 60 minutes) is usually adopted in the literature, we are

interested in evaluating the performance of the stop-by solution over different

intervals, which has never been explored before.460

Intuitively, a spatial error occurs if the user moves to other different cells

during the temporal cell boundary. To have a quantitative manner of such an

error, we define the spatial error of a temporal cell boundary with a period d

as follows:

error(d) =
1

|d|

∫
d

∥∥∥c(CDR) − c(real)
t

∥∥∥
geo

dt. (4)
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This measure represents the average spatial error between a user’s real cell465

location over time c
(real)
t and her estimated cell location c(CDR), during the time

period d. The interpretation of the spatial error is straightforward, as follows:

• When error(d) = 0, it means that the user stays at the cell c(CDR) dur-

ing the whole temporal cell boundary. Still, the estimation of d may be

conservative, since a larger |d| could be more adapted in this case.470

• When error(d) > 0, it means that the temporal cell boundary is over-

sized: the user in fact, moves to other cells in the corresponding time

period. Thus, a smaller |d| should be used for the cell.

Due to the relevance of this parameter on the model performance, in the

following we evaluate the impact of |d| on the spatial error.475

5.3. Impact of parametrization on stop-by accuracy

We evaluate the performance of the stop-by approach, by considering the

CDR and ground-truth Internet flow datasets (cf. Sec. 3). CDR are used to gen-

erate temporal cell boundaries, while locations in the fine-grained data of flows

are adopted as actual locations and are used to compute the spatial errors. We480

consider a comprehensive range of values |d| = {10, 30, 60, 120, 180, 240} minutes

for the stop-by parameters.

Fig. 9(a) and 9(b) show the CDF of the spatial error of temporal cell bound-

ary on Monday and Sunday, respectively. We observe that error(d) = 0 for 80%

of CDR on Monday (cf. 75% on Sunday) when |d| = 60 minutes, and for 60%485

of CDR on Monday (cf. 53% on Sunday) when |d| = 240 minutes. This result

is a strong indicator that users tend to remain in cell coverage areas for long

intervals around their instant locations recorded by CDR. It is also true that

many users are simply static, i.e., only appear at one single location in their

Internet flows, and, consequently have an associated radius of gyration Rug = 0:490

this behavior accounts for approximately 35% and 40% on Monday and Sunday,

respectively. The high percentage of temporal cell boundaries with error(d) = 0

in Fig. 9 may be due to these static users, since they will not entail any spatial
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Figure 9: CDF of the spatial error of temporal cell boundaries of CDR generated by the

stop-by solution over two groups of the users in the Internet flow dataset on (a) Monday and

(b) Sunday.

error, under any |d|. To account for this aspect, we exclude the static users in

the following, and only consider the mobile users, i.e., ones having Rug > 0.495

An interesting consideration is that the spatial error incurred by the stop-by

approach is not uniform across cells. Intuitively, a cell tower covering a larger

area is expected to determine longer user dwelling times and hence better es-

timates with stop-by. We thus compute for each cell its coverage as the cell

radius: specifically, we assume a homogeneous propagation environment and500

an isotropic radiation of power in all directions at each cell tower, and roughly

estimate each cell radius as that of the smallest circle encompassing the Voronoi

polygon of the cell tower. We remark that this approach yields overlapping

coverage at temporal cell boundaries, which reflects what happens in real-world

deployments. In the target area under study, shown in Fig. 4, 70% of the cells505

have radii within 3 km, and the median radius is approximately 1 km.

We can now evaluate the probability of having a temporal cell boundary with

a null spatial error, as Pe0 = Pr{error(d) = 0}. Fig. 10(a) and 10(b) present

the probabilities Pe0 grouped by the cell radius, when applying varying sizes of

temporal cell boundary on the days of study. We notice the following.510

• The probability Pe0 decreases with the increasing period marked by |d|,
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Figure 10: Spatial errors of temporal cell boundaries of CDR generated by the stop-by solution

over users with their Rg > 0: (a)(b) the probability (Pe0) of having a non-error temporal cell

boundary (−|d|, |d|), where |d| ∈ {10, 30, 60, 120, 180, 240} minutes, under several groups of

cell radius on (a) Monday and (b) Sunday; (c)(d) Box plot of non-zero spatial errors, grouped

by the cell radius and the time period of temporal cell boundary on (c) Monday and (d)

Sunday. Each box denotes the median and 25th − 75th percentiles and the whiskers denote

5th − 95th percentiles.
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indicating that using a large period on the temporal cell boundary in-

creases the chances of generating some spatial errors. For instance, for

|d| = 30 minutes, the probability of having a null spatial error is around

0.7 depending on the date and on the cell radius. When a larger |d| is515

used, the probability significantly increases (e.g., for |d| = 60 minutes, the

probability Pe0 reduces to around 0.6).

• The probability Pe0 correlates positively with the cell radius r. This trend

is seen on both Monday and Sunday (except some cases), indicating that

the cell size has an impact on the time interval during which the user520

stays within the cell coverage. Intuitively, handovers are frequent for users

moving among small cells and less so for users traveling across large cells.

The results support the idea that there is a strong correlation between the

temporal cell boundary and the cell coverage. Nevertheless, since CDR are

usually sparse in time, using a small temporal cell boundary could only cover525

an insignificant amount of cell visiting time, while using a big temporal cell

boundary increases the risk of having a non-null spatial error. To investigate

this trade-off, we plot the variation of the statistical distribution of the spatial

errors after excluding the null errors (i.e., keeping only cases with non-null

error(d)) in Fig. 10(c) and 10(d). We observe that:530

• The spatial error varies widely: it goes from less than 1 km to very huge

values (up to 3.6 km on Monday and to 7.5 km on Sunday). Hence, for

some users, the stop-by solution is unsuitable for reconstructing visiting

patterns due to the presence of such high spatial errors.

• The spatial error grows with the cell radius: when the cell size increases,535

the variation of the error becomes wider, while the mean value also in-

creases. This is reasonable because the higher the cell radius is, the farther

the cell is from its cell neighbors. Hence, when a spatial error occurs, it

means that the user is actually in a far cell that has a larger distance to

c(CDR).540
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5.4. Key insights

Overall, we assert that temporal cell boundary estimates user’s locations

with a high accuracy when |d| is small. This validates the previous finding

that users usually stay in proximity of call locations for certain time. The ac-

curacy reduces significantly, giving rise to spatial errors, when increasing |d|.545

Hence, the trade-off between the completion and the accuracy should be care-

fully considered when completing CDR using temporal cell boundaries. Using

a constant |d| over all users as in the stop-by solution is unlikely to be an

appropriate approach.

Building on these considerations, we propose enhancements to the stop-by550

and static solutions in the remainder of the paper. The data completion strate-

gies introduced in the following leverage common trends in human mobility, in

terms of (1) attachment to a specific location during night periods, and (2) a

tendency to stay for some time in the vicinity of locations where digital activities

take place. In particular, we tell apart strategies for CDR completion at night555

time and daytime: Sec. 6 presents nighttime completion strategies inferring the

home location of users; Sec. 7 introduces our adaptive temporal cell boundary

strategies leveraging human mobility regularity during daytime.

6. Identifying temporal home boundaries

The main goal of our strategies for CDR completion during nighttime is to560

infer temporal boundaries where users are located, with a high probability, at

their home locations. We refer to this problem as the identification of the user’s

temporal home boundary. Gaps in CDR occurring within the home boundary

of each user are then filled with the identified home location. The rationale for

this approach stems from our previous observations that CDR allow identifying565

the home location of individuals with high accuracy.

6.1. Proposed solutions

We extend the stop-by solution (cf. Sec. 5.2) in the following ways. Note

that all techniques below assume that the home location is the user’s most
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active location during some night time interval h, and that CDR not in h are570

completed via legacy stop-by.

• The stop-by-home strategy adds fixed temporal home boundaries to the

stop-by technique. If a user’s location is unknown during h = (10pm, 7am)

due to the absence of CDR in that period, the user will be considered at

her home location during h.575

• The stop-by-flexhome strategy refines the previous approach by ex-

ploiting the diversity in the habits of individuals. The fixed night time

temporal home boundaries are relaxed and become flexible, which allows

adapting them on a per-user basis. Specifically, instead of considering

h = (10pm, 7am) as the fixed home boundaries for all users, we compute580

for each user u the most probable interval of time h
(u)
flex ⊆ h during which

the user is at her home location. Then, as for stop-by-home, the user will

be considered at her home location to fill gaps in her CDR data during

h
(u)
flex.

• The stop-by-spothome strategy augments the previous technique by ac-585

counting for positioning errors that can derive (1) from users who are far

from home during some nights, or (2) from ping-pong effects in the asso-

ciation to base stations when the user is within their overlapping coverage

region. In this approach, if a user’s location during h
(u)
flex is not identified,

and if she is last seen at no more than 1 km from her home location, she590

is considered to be at her home location.

We compare the above strategies with the static and the legacy stop-by

solution introduced in Sec. 5, assuming |d| = 60 min. Our evaluation considers

dual perspectives. The first is accuracy, i.e., the spatial error between mobility

metrics computed from ground-truth GPS data and from CDR completed with595

the different techniques above. The second is completion, i.e., the percent of the

time during which the position of a user is determined. Note that the static

solution (cf. Sec. 5) provides user locations at all times, but this is not true for
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stop-by or the derived techniques above. In this case, the CDR is completed

only for a portion of the total period of study, and the users’ whereabouts remain600

unknown in the remaining time.

6.2. Accuracy and completion results

We first compute the geographical distance between the positions in the

GPS records in MACACO and Geolife and those in their equivalent CDR-like

coarse-grained datasets. These strategies are not designed to provide positioning605

information at all times expect the static solution, hence distances are only

measured for GPS samples whose timestamps fall in the time periods for which

completed data is available.

Fig. 11(a) and 11(b) summarize the results of our comparative evaluation of

accuracy, and allow drawing the following main conclusions:610

• The static approach provides the worst accuracy in both datasets.

• The stop-by-flexhome technique largely improves the data precision,

with an error that is lower than 100 meters in 90 − 92% of cases for the

MACACO users and with a median error around 250 meters for the Geolife

users.615

• The stop-by-spothome technique provides the best performance for both

datasets. For instance, about 95% of samples lie within 100 meters of the

ground-truth locations in the MACACO dataset, while the median error

is 250 meters (the lowest result) in the Geolife dataset.

These results confirm that a model where the user remains static for a limited620

temporal interval around each measurement timestamp is fairly reliable when

it comes to accuracy of the completed data. They also support previous obser-

vations on the quite static behavior of mobile network subscribers [25]. More

importantly, the information of home locations can be successfully included in

such models, by accounting for the specificity of each user’s habits overnight.625

The stop-by and derived solutions do not provide full completion by design.

Fig. 11(c) and 11(d) show the CDF of the hours per day during which a user
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Figure 11: CDF of the spatial error (in km) between samples from the GPS and completed

data over the (a) MACACO and (b) Geolife data. CDF of the completion of completed data

over the (c) MACACO and (d) Geolife data.
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cannot be localized by such solutions, for individuals in the MACACO and

Geolife CDR-like datasets, respectively. The completion performance is in fact

very heterogeneous across users, for all solutions: it can range from one hour630

per day for some individuals up to 23 hours per day for other subscribers. By

comparing the plots, we assert that the more irregular sampling of the Geolife

dataset translates into larger time gaps and smaller completion. Interestingly,

the stop-by approach yields the worst result for both datasets, with unknown

user positions in 12 and 19 hours per day in the median cases. Our proposed635

refinements to the stop-by solution increase the completion by inferring missing

user positions overnight, when the CDR sampling is reduced. The improvement

is significant, with a median gain over the basic stop-by solution of 4− 5 hours

for MACACO dataset and 3− 7 hours for the Geolife dataset.

Overall, the combination of the results in Fig. 11 indicates the stop-by-spothome640

solution as that achieving the best combination of high accuracy and fair com-

pletion, among the different completion techniques considered.

7. Identifying temporal cell boundaries

We now consider the possibility of completing CDR during daytime. Our

strategy is based again on inferring temporal boundaries of users. However,645

unlike what has been done with nighttime periods in Sec. 6, here we leverage

the communication context of human mobility habits and extend the time span

of the position associated with each communication activity to so-called temporal

cell boundaries.

7.1. Factors impacting temporal cell boundaries650

Hereafter, we aim to answer the following question: how to choose a proper

and adaptive period for a temporal cell boundary instead of a static fixed-to-

all period? To answer the question, we need to understand the correlation

between the routine behavior of users in terms of mobile communications and

their movement patterns. For this, we first study how human behavior factors655

31



that can be extracted from CDR may affect daytime temporal cell boundaries.

We categorize factors in three classes, i.e., event-related, long-term behavior,

and location-related, as detailed next. Then, we leverage them to design novel

approaches to estimate temporal cell boundaries.

7.1.1. Event-related factors660

We include in this class the meta-data contained in records of common CDR

datasets. They include the activity time, type (i.e., voice call or text message),

and duration4. Intuitively, these factors have direct effects on temporal cell

boundaries. For instance, in terms of time, a user may stay within a fixed cell

during her whole working period. In terms of type and duration, a long phone665

call may imply that the user is static, while a single text message may indicate

that the user is on the move. Besides, these factors are commonly found in and

easily extracted from any common CDR entries.

7.1.2. Long-term behavior factors

This class includes factors describing users’ activities over extended time670

intervals. They are the radius of gyration (URg), the number of unique visited

locations (ULoc), and the number of active days during which at least one event

is recorded (UDAY). These factors characterize a user by giving indications of (i)

her long-term mobility and (ii) her habit on generating calls and text messages,

which may be indirectly related to her temporal cell boundaries. For each user,675

these factors are computed from our CDR dataset (cf. Sec. 3.1) by aggregating

data during the whole 3-month period of study.

7.1.3. Location-related factors

Factors in this class relate to positioning information. The first factor is the

cell radius (CR), which we already proved to be affecting the reliability of CDR680

completion schemes in Sec. 5. The other location-related factors take account for

the relevance that different places have for each user’s activities. The intuition is

4We set the duration text messages to 0 seconds.

32



that individuals spend long time periods at their important places. Specifically,

we explore it by applying the algorithm presented by Isaacman et al. [27], which

determines prominent locations where the user usually spends a large amount685

of time or visits frequently.

The algorithm applies Hartigan’s clustering [28] on visited cell locations of

users in CDR and use logistic regression to estimate a location’s importance to

the user from factors extracted from the cluster that the location belongs to.

To start with, the cluster approach chooses the cell tower from the first CDR690

and makes it the first cluster. Then, it recursively checks all cell towers in the

remaining CDR. If a cell tower is within the distance threshold (we use 1 km)

to the centroid of a certain cluster, the cell tower is added to the cluster, and

the centroid of the cluster is moved to the weighted average of the locations

of all the cell towers in the cluster. The weights assigned to locations are the695

fractions of days in which they are visited over the whole observing period. The

clustering process finishes once all cell towers are assigned to clusters.

Once clusters are defined, the importance of each cluster is identified accord-

ing to the following observable factors: (i) the number of days on which any cell

tower in the cluster was contacted (CDay); (ii) the number of days that elapse700

between the first and the last contact with any location in the cluster (CDur);

(iii) the sum of the number of days cell towers in the cluster were contacted

(CTDay); (iv) the number of cell towers inside the cluster (CTower); (v) the dis-

tance from the registered location of the activity to the centroid of the cluster

(CDist).705

These factors derived from a cluster correlate with the time that the user

spends in the cluster’s locations, as shown by Isaacman et al. via their logistic

regression model [27]. It is worth noting that we cannot reproduce the exact

model in [27], since the used ground-truth is not publicly available. However,

we can still use the same factors for our objective, i.e., identifying temporal cell710

boundaries.
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7.2. Supervised temporal cell boundary estimation

So far, we have introduced human behavior factors that might be directly

or indirectly related to temporal cell boundaries. In order to use them for

our purpose, we need a reliable model linking them to actual temporal cell715

boundaries. In the following we introduce two approaches to do so, both based

on supervised machine learning.

7.2.1. Symmetric and asymmetric temporal cell boundaries

We define two kinds of temporal cell boundaries: symmetric and asymmetric.

Given a CDR entry at time t, determining its temporal cell boundary means to720

expand the instantaneous time t to a time interval d, during which the user is

assumed to remain within coverage of the same cell. For a symmetric temporal

cell boundary, this period is generated from a CDR-based parameter d± as

d = (t − d±, t + d±), i.e., it is symmetric with respect to the CDR time t.

Instead, the period of an asymmetric temporal cell boundary is generated from725

two independent parameters d+ and d− as d = (t− d−, t+ d+).

We design sym-adaptive and asym-adaptive approaches, both of which

receive a CDR entry as input and return an estimate of its associated temporal

cell boundary. More precisely, the factors discussed in Sec. 7.1 are extracted

for each user and CDR record, and converted to an input vector x, under the730

following rules: (i) the categorical factor type is converted to two binary features

by one-hot encoding5; (ii) the time is converted to the distances (in seconds)

separating it from 10am and from 6pm6; (iii) the other factors are used as plain

scalar values. Given a CDR entry and its input vector x, we have the following

approaches:735

• The sym-adaptive approach contains one model that accepts the input

vector and predicts the parameter d± as a symmetric estimation of the

corresponding temporal cell boundary, i.e., d± = Fsym(x).

5Used to deal with the unbalanced occurrence of the types.
6Daytime interval covered by the used dataset (cf. Sec. 3.2).
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• The asym-adaptive approach contains two models that separately predict

the parameters d+ and d− as a joint asymmetric estimation of the corre-740

sponding temporal cell boundary, i.e., d+ = F+
asym(x) and d− = F−

asym(x).

We use supervised machine learning techniques to build the models. It is worth

noting that the user identifier is not in the input vector x because we do not want

to train models that bound themselves to any particular user. This gives our

models better flexibility and ensures higher potential for applying the trained745

model into other mobile phone datasets where the same factors can be derived.

7.2.2. Estimating temporal cell boundaries via supervised learning

We detail our methodology and results, by (i) formalizing the optimiza-

tion problems that capture our goal, (ii) discussing how they can be addressed

via supervised machine learning, and (iii) presenting a complete experimental750

evaluation.

Optimization problems. All the models are generalized from a training set

X consisting of CDR entries (as input vectors) and their real temporal cell

boundaries (which are originally asymmetric), i.e., X = {(xi, d+
i , d

−
i )}.

To build the asym-adaptive approach, the objective is to find two sepa-755

rate approximations, as F+
asym(x) and F−

asym(x), to functions F+(x) and F−(x)

that respectively minimize the expected values of two losses L(d+, F+(x)) and

L(d−, F−(x)), i.e.,

F+
asym(x) = arg minF+ Ed+,x[L(d+, F+(x))], (5)

F−
asym(x) = arg minF− Ed−,x[L(d−, F−(x))], (6)

where L is the squared error loss function, i.e., L(x, y) = 1
2 (x− y)2.

To build the sym-adaptive approach, a modified training set X± = {(xi, d±i )}760

is firstly generated from the original X by applying d±i = min{d+
i , d

−
i } on each

real asymmetric temporal cell boundary. Then, as our objective, we need to find

an approximation Fsym(x) to a function F±(x) that minimizes the expected
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value of the loss L(d±, F±(x)), i.e.,

Fsym(x) = arg min
F±

Ed±,x[L(d±, F±(x))]. (7)

Learning technique. In order to compute the approximations, we utilize a765

typical supervised machine learning technique, i.e., Gradient Boosted Regres-

sion Trees (GBRT) [29, 30]. Although several supervised learning techniques

can be adopted, we pick the GBRT technique because (i) it is a well-understood

approach with thoroughly-tested implementations, (ii) it has advantages over

alternative techniques, in terms of predicative power, training speed, and flex-770

ibility to accommodate heterogeneous input (which is our case) [31], and (iii)

it returns quantitative measures about the contribution of each factor to the

overall approximation [29].

In the GBRT technique, an approximation function is the weighted sum of

an ensemble of regression trees. Each tree divides the input space (i.e., the775

vector x of factors) into disjoint regions and predicts a constant value in each

region. The GBRT technique combines the predictive power of all regression

trees having a weak predicting performance by making a joint predictor: it is

proved that the performance of such a joint predictor is better than that of

each single regression tree [30]. The ensemble is initialized with a single-leaf780

tree (i.e., a constant value). During each iteration, a new regression tree is

added to the ensemble by minimizing the loss function via gradient descent. An

algorithm of the GBRT technique for building the approximation of the function

Fsym in the sym-adaptive approach is given in Alg. 1. In the algorithm, the

function FitRegrTree is used to build a regression tree based on the input785

and the gradients of the function in the last iteration, of which we refer the

reader to [30, Chapter 9.2.2] for the detail. Two important tuning parameters

are in the algorithm, i.e., the number of iterations M (i.e., the number of

regression trees to be added to the ensemble) and the learning rate ν (i.e., the

level of contribution expected by a new regression tree), which we determine via790

cross validation and discuss later. In the asym-adaptive approach, the same

algorithm is used except that the training set X± is replaced by X .
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Algorithm 1: GBRT algorithm [30, Algorithm 10.3] for finding the ap-

proximation function Fsym(x) in the sym-adaptive approach

1 function GBRT(X±,M, ν);

Input : X± - training set, M - number of iterations, ν - learning rate

Output: Fsym(x) - symmetric temporal cell boundary estimation

function

2 F±
0 (x) = arg minγ

∑
i L(d±i , γ);

3 for m← 1 to M do

4 for (d±i ,xi) ∈ X± do

5 gi = −∂L(d±i ,Fm−1(xi))

∂Fm−1(xi)
;

6 end

7 G = {(gi,xi)};
8 hm(x) = FitRegrTree(G);

9 ρm = arg minρ
∑
i L(d±i , Fm−1(xi) + ν · ρ · hm(xi));

10 Fm(x) = Fm−1(x) + ν · ρm · hm(x);

11 end

12 return FM (x);

Experiments. The first step is to build the training sets. For that, we ran-

domly select 50% of the users from the two available days (i.e., a Monday and a

Sunday) in the Internet flow dataset (cf. Sec. 3.2). In particular, from the CDR795

and Internet flow datasets, we first extract for each CDR entry of these selected

users its corresponding input vector x as well as the parameters d+, d− of its

real temporal cell boundary. We then build the two training sets X and X±.

The second step is to build the approximation functions (i.e., F+
asym, F−

asym,

and Fsym) from the training sets. For that, we have to first tune the M and800

ν parameters of Alg. 1 of each approximation function. To this end, we use a

3-fold cross-validation to select the number of iterations M from the candidate

set {100, 500, 1000, 2000, · · · , 10000} and the learning rate ν from the candidate

set {0.1, 0.2, · · · , 1}. In particular, we divide the training set X (or X±) into
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Figure 12: Relative Importance of features in determining accurate temporal cell boundaries.

equal-sized three subsets. For each combination of M and ν, we train the model805

corresponding to each approximation function based on one subset and validate

it on the other two subsets. We repeat this operation three times with each of

the subsets used as training data. We select as our actual parameters the M

and ν values that achieve the lowest loss in the cross-validation. Finally, we use

the training sets X and X± and the tuning parameters that we select to build810

the functions F+
asym, F−

asym, and Fsym corresponding to the asym-adaptive and

sym-adaptive approaches.

Fig. 12 shows the relative importance of factors with respect to the esti-

mation of a temporal cell boundary in the training procedure of the GBRT

technique. For each factor, its importance is computed as a relative value of the815

sum of its corresponding importance in all the three approximations. The im-

portance indicates the degree of a feature contributing to the construction of the

regression trees. This figure allows us drawing the following main conclusions,

valid for both approaches.

• The three most important factors are the timestamp of the activity, the820

cell radius, and the radius of gyration. This indicates that the time spent

by a user within coverage of a same cell mainly depends on the cell size, the

precise time when the activity occurred, and the user’s long-term mobility.
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Figure 13: CDF of the spatial errors of temporal cell boundaries computed on (a) Sunday

and (b) Monday; CDF of the completion of completed data on (c) Sunday and (d) Monday,

across the stop-by, static, sym-adaptive, and asym-adaptive approaches.

• Surprisingly, the activity’s type is the least relevant factor, indicating

that knowing whether a user generates a call or a message is useless in825

determining a temporal cell boundary.

7.3. Accuracy and completion results

We compare our two trained approaches with the stop-by and static ap-

proaches using the CDR from the remaining 50% of the randomly-selected users.

For the two sym-adaptive and asym-adaptive approaches, we build two test-830

ing sets from the CDR entries of the remaining users. We then let them generate

39



adaptive symmetric and asymmetric temporal cell boundaries using the input

vectors in the testing sets. Besides, we let the stop-by approach generate tem-

poral cell boundaries using |d| = {10, 60, 180} minutes. As in Sec. 6, we make

a comparative study by evaluating the solutions regarding accuracy and com-835

pletion, where the accuracy is measured by evaluating the spatial error in (4)

(cf. Sec. 5). Recall that a good data completion approach should cover the ob-

serving period as much and precise as possible, i.e., satisfying high accuracy

and completion simultaneously.

Fig. 13(a) and 13(b) display the distribution of the spatial errors over all840

temporal cell boundaries. Our results confirm that the spatial error increases

as td becomes larger when using the stop-by approach. More importantly, the

two adaptive approaches perform slightly better than the stop-by approach

does with its most common setting (|d| = 60 minutes) in terms of the spatial

error. As expected, the static solution has the worst performance, similarly to845

what observed in the case of home boundaries using the MACACO and Geolife

datasets.

Fig. 13(c) and 13(d) plot the distribution of the completion per users over all

approaches except static (of which the completed data always covers the whole

period). The x-axis of the figures has 8 hours because the Internet flow dataset850

only covers an eight-hour day time, i.e., (10am, 6pm). We remark that both our

adaptive approaches score a significant performance improvement in terms of

completion: the amount of time during which users’ locations stay unidentified is

substantially reduced with respect to the legacy stop-by approach. On average,

only approximately 2 hours (25% of the period of study) of the user’s day time855

remains unidentified after applying the asym-adaptive approach, while 3 hours

remains unidentified after using the sym-adaptive and stop-by (|d| = 180

minutes) approaches. The stop-by approach with its most common setting

(|d| = 60 minutes) has the same degree of accuracy as the adaptive approaches

but has a far less degree of completion (i.e., a median of 6 unidentified hours).860

Overall, these results highlight a clear advantage provided by adaptive ap-

proaches for CDR completion based on supervised learning. Consequently, the
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adaptive approaches achieve a slightly better performance in terms of accuracy

but have a far better performance in terms of completion. The asym-adaptive

approach has an obvious advantage than the competitors: it completes 75% of865

the day hours with a fairly good accuracy.

8. Conclusion

In this paper, we leveraged real-world CDR and GPS datasets to character-

ize the bias induced by the use of CDR for the study of human mobility, and

evaluated CDR completion techniques to reduce some of the emerging limita-870

tions of this type of data. Our results confirm previous findings on the sparsity

of CDR, and, more importantly, provide a first comprehensive investigation of

techniques for CDR completion. In this context, we propose solutions that (i)

dynamically extend the time intervals spent by users at locations where they

are pinpointed by the CDR data during daytime, and (ii) sensibly place users at875

their home locations during nighttime. Extensive tests with heterogeneous real-

world datasets prove that our approaches can achieve excellent combinations of

accuracy and completion. On average, for daytime hours, our approaches can

complete 75% of the time in which 95% have errors below 1 km; for nighttime

hours, our refinements of the legacy solution have a performance gain of 4-5880

or 3-7 hours on two datasets regarding completion and up to 10% of a perfor-

mance gain regarding accuracy. Particularly, compared with the most common

proposal in the literature, our best adaptive approach outperforms by 5% of

accuracy and 50% of completion.
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