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Abstract—Employing mobile devices to perform data analytics
is a typical fog computing application that utilizes the intelligence
at the edge of networks. Such an application relies on the
knowledge of the mobility of mobile devices and their users to
deploy computation tasks efficiently at the edge. Therefore, this
paper surveys the literature on the mobility-related utilization
of operator-collected CDR (charging data records) – the most
significant proxy of large-scale human mobility studies. We
provide an innovative introductory guide to the CDR data
preliminary and reveal original issues regarding CDR-based
mobility feature computation and applications at the edge. Our
survey plays important roles in investigating both human mobility
and fog computing involving mobile devices.

I. INTRODUCTION

The proliferation of mobile devices at the edge of cellular
networks brings the possibility of collecting large-scale human
behavioral data [1]. In the past decade, mobile devices have
become the most popular data source for investigating human
behavior or related issues [2], such as social relations [3],
network traffic [4], and human mobility [5, 6].

Meanwhile, recent advances in mobile devices and mobile
operating systems make it possible to employ mobile devices
as data processing nodes rather than human behavior sensors.
Applying distributed data analytics at the edge of cellular
networks allows conducting data collection and processing
more efficiently and securely [1], which alleviates heavy com-
putation and storage pressure and also resolves data privacy
concerns as in centralized data processing [7, 8].

To this end, it is essential to understand the behavior of
mobile users in the network, particularly their mobility, to
conduct intelligent utilization of network resources at the
edge. The knowledge of such behavior helps to understand
where mobile devices are located and consequently, where
and when their resources can be leveraged. Therefore, it is
necessary to study the way human behaves regarding habits
of mobility, what will drive the spatiotemporal availability
of mobile devices playing as both resource consumers and
providers in fog computing.

Mobile devices, having their roles in fog computing, are
also service consumers in cellular networks. Therefore, the
mobility of mobile users can be obtained and investigated by
leveraging operator-collected mobile phone records, or namely
CDR (charging data records) [9]. Nowadays, collecting CDR
is the most common mean of acquiring human behavioral data,
which can easily cover broad areas and user groups with min-
imal cost [2]. Accordingly, CDR datasets are often employed
in human mobility studies, bringing as main advantage large-
scale populations and long observing periods [2].

This paper reviews the literature on the CDR data utilization
for human mobility studies. Due to the fact that the quality
of CDR-based mobility data is determined by the nature of

human communications and varies widely across users, both
data preliminary and processing need to be carefully designed
and implemented. Yet the description of the data preliminary
is sometimes neglected in research works, which questions the
validity of their results and conclusions. Hence we summarize
in this paper the common practices and our experience on
dealing with mobility data extracted from CDR datasets and
provide the significant takeaways in terms of data preliminary,
mobility feature computation, applications, and future research
directions.

Our survey differs from the previous literature reviews
of human mobility or network traffic analyses. They either
summarize the models, applications, and techniques that are
designed or employed for characterizing and utilizing human
mobility as in [10, 11] or cover the vast literature of multiple
research communities on mining mobile phone records as
in [2]. Instead of the “outcomes” that are originated from CDR
or other mobility data proxies, this paper mainly focuses on
how they conduct the data preliminary and processing on CDR
(via, e.g., concepts, methodologies, and techniques) to obtain
reliable and convincible results. We believe that our discussion
in this paper, summarized as the takeaways regarding CDR
data mining, will provide direct and valuable guidance to those
who are working on mobility data.

II. COLLECTING HUMAN MOBILITY DATA

A. Telecommunication events and their CDR

The availability of mobility data is the most fundamental
requirement for human mobility analyses. In the literature,
CDR, generated by mobile devices and collected by cellular
operators, are the primary choice among a variety of mobility
data proxies (CDR, WiFi, GPS, and travel surveys). CDR
describe mobile devices’ telecommunication events and are
usually time-stamped and geo-referenced so that they can
be leveraged as human mobility data [2]. Moreover, as the
necessary data of cellular operators for billing or network
management purposes, they are collected in a very large
population at a small cost.

In the 3GPP lexicon, a series of CDR types are defined
corresponding to telecommunication events such as voice
calls, text messages, internet visits, mobility updates, and
location requests [9]. Nevertheless, not all of them contribute
to research works: only voice call and text message CDR are
commonly seen [2], with a large and growing body of the
literature on the their corresponding events (e.g., [12]) and the
mobility data extracted from them (e.g., [13, 14]). It is known
that such mobility data has limited spatiotemporal granularity
and also suffers from a high degree of temporal heterogeneity
and sparsity [15]. Internet visit CDR appear in a few of human
mobility studies. They provide better mobility data with higher
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Fig. 1: Heatmaps of the number of users of our (a) voice call
and (b) internet visit CDR dataset.

spatiotemporal granularity than voice call CDR and thus are
often used as the ground-truth of the latter as in [13], while
they are mostly collected within short observing periods [2].

B. Real-world CDR dataset

Hereby we give an overview of the two most important CDR
datasets employed by our mobility analyses, as an example of
real-world CDR datasets.

The first one consists of voice call CDR generated by 3.6M
prepaid mobile subscribers in Mexico during approximately
one-year. Each voice call CDR contains the caller’s and
callee’s hashed identifiers, the call duration, the call initial
timestamp, and the location of the cell tower to which the
caller’s device is connected to when the call originates. We
portray in Fig. 1a the heatmap of the number of users in each
hour of the voice call CDR dataset. We see clearly daily and
weekly repetitive patterns of voice call behavior: there is an
active period of making phone calls on each day and these
active periods of each week are quite similar.

The second one consists of internet visit CDR of 0.6M of
mobile devices in Shanghai while we only have the times-
tamps and cell tower locations because the other critical CDR
attributes are removed by the data provider for privacy reasons.
Similarly, the number of users per hour is illustrated by the
heatmap in Fig. 1b. We see that there is still a daily repetitive
pattern of internet visits but is less heterogeneous than voice
calls, meaning that these CDR can provide more complete
mobility data with less temporal sparsity.

It is worth noting that we observe imperfectness on both
heatmaps: the user numbers of certain hours are significantly
less than the others. This can be explained by public holi-
days and data collection abnormalities. Such imperfectness is
common in CDR datasets and brings the necessity to perform
data preliminary, i.e., selecting appropriate populations of
study, observing periods, and CDR attributes. To this end, we
integrate our experience on data preliminary and summarize
the common practices used in the literature, introduced next.

III. COMMON PRACTICES IN MOBILITY DATA PROCESSING

The reliability of data preliminary determines the quality
of data mining and the representativeness of results obtained.

In our experience of mining our CDR datasets, we apply a
multitude of data preliminary steps and study the start-of-
the-art works having detailed data preliminary description. In
this section, we summarize common and effective practices
in terms of data preliminary for CDR-based human mobility
investigation.

• Extract location coordinates via third-party services.
Locations are usually inherent as GPS coordinates in
CDR while sometimes they appears as their original
form, i.e., Cell ID, and their coordinates need to be ex-
tracted manually. In this case, certain third-party services
are available, including OpenCelliD1, France OpenData2,
Google Geolocation3, Unwired Labs4, OpenSignal5 and
Mozilla Location Service6. They are usually powered by
community databases and should be chosen carefully ac-
cording to both their areas of study and data contributors.

• Filter out ”bad” users. It is common to select users of
study for reliability or generality by setting correspond-
ing thresholds. Although there is hardly a standard, a
relatively common threshold for voice call CDR is to
keep those who have ≥ 0.5 Call/Hr and unique locations
NL ≥ 2 as in [5, 13, 16], which can keep significant user
locations and sufficient mobility information [13]. Note
that such filters may drop a large number of users and
should only be applied on mobility data having a large
population.

• Reduce temporal/spatial resolutions. A fairly good set-
ting on resolutions can reduce data quality requirement.
For temporal resolutions, depending on CDR types and
data quality, 15 minutes [13], 1 hour [5, 16], and 2
hours [17] are common. For spatial resolutions, a com-
mon practice is to merge adjacent locations via clustering
methods (e.g., DBScan, Optics), as in [15, 17].

• Segment observing periods. Due to temporal hetero-
geneity of human behavior, telecommunication events
are not captured uniformly over time. Therefore, it is
common and effective to divide the data’s collecting
period into segments of study, e.g., daytime and night-
time hours [15], weekdays and weekends [18], weeks
or months [5]. Despite of possible loss of long-term
behavior, this practice can usually ensure more users than
using the whole collecting period.

• Correlate with the mobility loss. This is to build a func-
tion between results and inherent features of human foot-
prints (e.g., the location loss rate) by leveraging ground-
truth datasets. The function is then used to fix the biased
result obtained by the incomplete mobility information.
For instance, Song et al. [5] find a linear correlation
between the loss rate of voice calls and the logarithm
of the entropy rate of time-ordered locations [5], and
then employ this correlation to compute the predictability
of human mobility from incomplete CDR-based mobility
data.

• Perform controlled experiments. This is to repeat the
methodology or the mobility feature computation on
controlled datasets, e.g., in [5, 16]. The controlled dataset
usually has a higher resolution than the counterpart. The

1https://www.opencellid.org
2https://www.data.gouv.fr/fr/datasets/
3http://developers.google.com
4http://unwiredlabs.com
5http://opensignal.com
6https://location.services.mozilla.com



conclusion is more convincible provided that the same
results can be obtained from both datasets.

• Fill spatiotemporal gaps. Although CDR cannot provide
fully complete mobility information [15], it is enough to
conduct reliable mobility inference so as to enlarge the
availability of human footprints. Although the literature
on this topic is fairly thin, several solid works are
proposed. Ficek et al. [14] propose a probabilistic inter-
call mobility model to determine users’ positions between
their consecutive voice calls. Sahar et al. [19] proposes
an interpolation-based approach while it only work in
the presence of trajectories composed of thousands of
locations per day. For that, we also propose machine
learning strategies to extend the availability of CDR
having low user sampling rates [15, 20].

In summary, a solid data preliminary step is critical to
conduct reliable human mobility analyses. To achieve such
a step, the practices mentioned above need to be utilized in
a comprehensive and flexible way corresponding to actual
research or application scenarios.

IV. HOW INDIVIDUAL MOBILITY IS MEASURED?

Following the data preliminary step, the mobility of each
user of the dataset is usually investigated as the next step by
computing several straight-forward mobility features, to help
the design and implementation of complex mobility analyses
or applications. In this section, we first summarize these
common features of individual mobility, in terms of users’
locations and travels, and then we discuss an important but
ignored issue of the computation of the radius of gyration.

A. How locations are visited?

In a CDR dataset, each user has a CDR-based trajectory
of locations described by tens or hundreds of spatiotemporal
points. It is essential to understand how the user has visited
these locations. Several features are typical to answer this
question, introduced as follows.

1) Cell coverage: Voronoi tessellations are often computed
from all observed locations and are used as an estimation of
the dataset’s spatial resolution, as in [5, 15, 17]. Actually the
locations of CDR are usually the ones of the cell towers han-
dling telecommunication events. Mobile devices are actually
in the areas covered by these cell towers. As an illustration,
we plot in Fig. 2a the Voronoi tessellations of our voice call
CDR dataset. We see that each Voronoi tessellation occupies
an area around 2 km2. In addition, we show in [15] that
the location precision of using CDR dataset in metropolitan
areas is around 1 km. Besides, with a large-scale dataset,
such Voronoi tessellations can be leveraged to compute the
population density of the area [2].

2) Repetitiveness: It is known that each user tends to have
a few frequently visited locations [6, 16]. Therefore, it is
important to understand the repetitiveness of these locations.
Given a CDR-based trajectory with multiple locations, the
repetitiveness on a per-user basis is computed as the number
of unique locations in the trajectory and the probability of
each location’s appearance. We plot in Fig. 2b the overall
probabilities P (L) of appearance of the most frequent 50
locations versus their appearance rank L in the CDR dataset.
We see that only two locations are visited more than 10% of
time on average. Besides, it is observed that P (L) ∼ (L)−1

as in the other CDR datasets [16].

3) Significant locations and categories: It is also often seen
in the literature to mark those frequently visited location with
intuitive labels, e.g., extracting important locations. For that, a
simple and common way is to divide the observing period into
sub-periods on a daily basis and to select the most frequent
locations of each sub-period, such as home (nighttime) and
work (daytime), as in [16, 18, 21].

B. How users travel?

The features above describe the mobility of a user from the
viewpoint of locations. We also need to understand how a user
travels during the observing period, from the viewpoint of his
entire trajectory, which are usually described by the following
features.

1) Displacement: The traveled distance between each two
consecutive spatiotemporal points, i.e., ∆u, is computed to
express the location displacement of a user, as in [16]. On
a per-user basis, the maximum displacement ∆max

u and the
average displacement ∆u often appears in the literature. We
plot the distribution of the latter metric in Fig. 2c. It shows
that a majority of the users (90%) have short-range movement
(≤ 10 km) between two consecutive locations.

2) Traveled distance: The total traveled distance of a user,
represented as

∑
∆u, is computed as the sum of a user’s

location displacements and show directly the user’s movement,
which is usually used with the radius of gyration together. We
plot in Fig. 2d the distribution of

∑
∆u across our users of

study. We see that a large number of users have small traveled
distances because of their low average location displacement
and limited numbers of voice calls, while there is still a
certain group of users who travel a lot. According to our
experience, these users should be carefully addressed in the
data preliminary.

3) Span of movement: To show how a user moves in a
simple and quantitative manner, the radius of gyration of
movement is often considered. After being originally adopted
in human mobility in [16], the radius of gyration has become
popular in human mobilities studies [10]. It is actually the
perpendicular distance from the point mass to the axis of
rotation, originally leveraged to deal with multi-dimensional
points in structural engineering or polymer physics. For human
mobility investigation, the radius of gyration is computed on a
per-user basis from the locations of each trajectory. However,
since the locations are spatiotemporal points in this case,
how to deal with their temporal factors raises a novel and
unresolved issue regarding the computation of the radius of
gyration, particularly discussed next.

C. Computing radius of gyration from spatiotemporal points

When computing the radius of gyration from a CDR-based
trajectory, we have to deal with the situation that a location is
likely to appear many times. In other words, the spatiotemporal
points of a trajectory may contain a far less number of unique
cell tower locations, which raise a question: how to regard such
spatial repetitiveness in the radius of gyration? Surprisingly,
we find that mobility studies that compute the radius of
gyration do not mention how they address this problem except
a few (e.g., [16]). Here we provide a thorough discussion
regarding this issue.

The simplest way is to ignore temporal information and use
only the unique locations in the trajectory. By doing this, we
just consider those locations as normal points in a typical 2-
dimensional space. Suppose a CDR-based trajectory has N
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Fig. 2: (a) Voronoi tessellations in our area of study; red dots represent cell towers. (b) Probability of appearance of the
most frequent 50 locations of each user; locations are ranked by their appearance frequencies on the x-axis. (c)(d) Cumulative
distributions of each user’s (c) average displacement and travel distance across our users of study.

unique locations {r1, · · · , rN}, its corresponding radius of
gyration, represented as RGunique, is computed as follows:

RGunique =

√√√√ 1

N

N∑

k=1

(rk − runique
cm )2, runique

cm =
1

N

N∑

k=1

rk,

(1)
where runique

cm is the center of mass of these unique locations.
This computation avoids considering temporal dynamics of
the user’s movement and follows the general definition of the
radius of gyration. Nevertheless, it cannot reflect the actual
user’s movement: the user’s center of mass of runique

cm is strongly
biased because those locations which the user stays a majority
of time are regarded as equal as the occasional locations in
Eq. (1).

The second way is to use the spatiotemporal points as they
are and take all the points into account even if some of them
are repeated, as used and described in [16]. It equals to use
the locations’ numbers of events (CDR) as their weights of
importance in the radius of gyration. Suppose the locations
{r1, · · · , rN} of the trajectory above have {m1, · · · ,mN}
events, respectively. The corresponding radius of gyration,
represented as RGevent, is computed as follows:

RGevent =

√√√√
∑N

k=1mk (̇rk − revent
cm )2

∑N
i=1mi

, (2)

revent
cm =

∑N
k=1mkrk∑N
i=1mi

. (3)

For voice call CDR, this computation respects the user’s
movement because those locations with longer dwelling time
usually have more voice calls [13] and higher importance in
Eq. (2). However, it may be biased in internet visit CDR, the
number of which is determined by not only dwelling time but
also internet services and applications.

Therefore, we present the third and most reasonable way of
the radius of gyration computation, i.e., to divide the trajectory
into time slots using a fixed temporal resolution and gather the
most frequent location of each time slot. It can relax the impact
of bursting events but can still extract the importance from the
number of events. Accordingly, if the locations {r1, · · · , rN}
occupy {s1, · · · , sN} time segments, respectively, the radius
of gyration RGtime is computed as follows:

RGtime =

√√√√
∑N

k=1 sk(rk − rtime
cm )2

∑N
i=1 si

, (4)
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Fig. 3: CDF of the three radius of gyration across the users of
(a) the voice call CDR dataset and (b) the internet visit CDR
dataset.

where the center of mass rtime
cm is computed similarly as in

Eq. (3) by replacing all mi with si.
To evaluate this three ways of computation, we compute

them on both our voice call and internet visit CDR datasets,
and portray in Fig. 3 the distributions of RGunique, RGevent, and
RGtime where RGtime is computed using 30-minute time slots.
First, we observe that RGunique is far larger than the other two
metrics, indicating a strong bias brought by ignoring temporal
factors. Then in the voice call CDR dataset, the distributions of
RGtime and RGevent are quite similar, as shown in Fig. 3a. This
is because the voice call CDR of a user is usually sparse in
time and each 30-minute time segment tends to have only one
or two calls so that the weights computed from time segments
and events are highly similar. A large shift between these two
distributions is observed in Fig. 3b, indicating that the burst of
internet visits biases the radius of gyration if we still employ
RGevent.

Consequently, to have realistic measurement of the user’s
movement span via the radius of gyration, whether or not
CDR are sparse, we should measure each trajectory using an
appropriate temporal resolution and adopted the time-segment-
based metric as in Eq. (4).

V. LEVERAGING INDIVIDUAL MOBILITY AT THE EDGE

Still, mobility data need to be leveraged by practical appli-
cations deployed at the edge of networks. This section presents
our efforts on converting CDR-based mobility data into such
applications by giving two representative applications that
utilize the mobility of individuals as examples, i.e., mobility
reconstruction and location prediction.
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Fig. 4: (1) CDF of the theoretical and practical accuracy of
forecasting a user’s next cell tower from preceding ones. (2)
CDF of the prediction accuracy enhancement by leveraging
the knowledge of a user’s preceding data traffic generation.

A. Mobility reconstruction

Due to the heterogeneous nature, voice call CDR do not
have a stable sampling rate and cannot fully capture one’s
entire trajectory. For that, we address the mobility reconstruc-
tion problem to recover missing locations in a CDR-based
trajectory, which is also valuable to trajectories obtained from
other CDR types or mobility data proxies because the risk of
loosing mobility information always exist. Nevertheless, the
literature on this topic is fairly thin [15].

To fill the research gaps, we have designed the mobility
reconstruction strategies using Gradient Boosting with deci-
sion trees [15] and Matrix/Tensor Factorization [20]. We also
implement the state-of-the-art interpolation method for CDR-
based trajectory reconstruction [19]. Leveraging our CDR
datasets, we show the validity of these strategies via data-
driven simulations. More importantly, these strategies only
rely on an individual’s trajectory and recent mobile devices
with AI chips have enough computation power to implement
these techniques. We believe that the mobility reconstruction
is a reasonable application scenario deployed at the edge of
cellular networks.

B. Location prediction

The accurate knowledge of a user’s future whereabouts is
significant in mobility-related applications, e.g., optimizing
energy consumption of mobile devices [22]. In our study, we
consider relatively “simple” location prediction methods, to
ensure that these methods can be implemented and meet the
availability of computation and data storage on mobile devices.
For example, simple Markov chain can achieve a fairly good
accuracy in predicting a user’s next location [23], and clearly,
has low cost of time and space. Recent enhanced mobile
devices, such as mobile AI chip integration [24] , make it
possible to consider improved prediction methods. Particularly,
we employ the following ones:

• PPM (Prediction by partial matching): a prediction
method improved from Markov chain. It achieves better
accuracy and requires less preceding samples [25].

• MLP (Multilayer perceptron): a classical machine learn-
ing method employing neuron networks [26]. For the fea-
sibility of mobile phone deployment, we employ a simple
full connected (256,256,256) network as inner layers and
the rectified linear unit (ReLU) as the activation function.
Named by the input context, we design three MLP-based
predictors, i.e., MLP – only using preceding locations,
MLP-CI – using both preceding locations and temporal
(weekday, date, hour) features, and MLP-CI-PastV –

adding features of mobile data traffic consumption into
MLP-CI.

With the help of CDR datasets, we can study the loca-
tion prediction problem and enlarge the population scale to
thousands of users. Particularly, we preform our study on
approximately 7K users with sufficient mobility data in an
observing period of 150 days. For each predictor and each
user, we let the predictor initialize using the locations of the
first 100 days to guarantee a entire “warm up”, and using it
to predict the remaining locations and compute the accuracy.
During the prediction, each predictor is updated every day to
simulate an actual mobile phone application.

We evaluate the performance of our predictors and portray
the CDF of the prediction accuracy across our users in Fig. 4a,
πPPM, πMLP, πMLP-CI, and πMLP-CI

PastV show the actual prediction
accuracy of each user, and Πmax

u represents the theoretical
performance derived via information theory. Πmax

u worths
some additional explanation. It is computed via information
theory [5] and shows the upper bound of the prediction
accuracy from temporal orders of historical visiting patterns.
We see that, the theoretical upper bound shows an 85% of
the maximum expected accuracy on average, while leveraging
preceding locations can only achieve 73% (PPM) and 74%
(MLP) of the average practical accuracy. Approximately 76%
of the average practical predictability is achieved by the
MLP-CI predictor which further leverages the time as the
context information. The best performance is achieved by the
MLP-CI predictor with the knowledge of previous data traffic
volumes, which has 79% of the practical predictability.

We also plot in Fig. 4b the CDF of the accuracy en-
hancement of each user brought by the use of historical data
traffic volumes in the prediction. We note that for the PPM
and MLP predictors, only less than 50% of the users have
such enhancement up to 5%, while the practical predictability
of the results even describes at most 10% surprisingly. It
indicates that, the context information, such as time and data
traffic consumption, do have the capability of achieving a
better prediction of a user’s locations, while only the machine
learning techniques could absorb and utilize such information
efficiently, nor the Markovian methods.

In summary, we find that simple prediction methods can
achieve a fairly good accuracy in location prediction and are
able to be deployed in mobile phones.

VI. CONCLUSION AND DISCUSSION

In the previews sections, we have presented the important
issues in terms of data collection, data preliminary, mobility
feature completion, and mobility applications. Still, because
CDR have appeared as important resources for research since
only the past decade [2], there are a multitude of remaining
open problems and future research directions regarding human
mobility. In the following, we discuss some critical issues.

• Is there any better mobility data source? This answer
to this question depends on application scenarios. For
instance, GPS data is usually a better choice providing
higher spatiotemporal resolutions, if a large-scale user
population is not necessary. There is general agreement
on the fact that no other technique can cover the same
amount of users as CDR and meanwhile maintain such
low cost. In fact, CDR data is still far from its full
potential as mobility data source. With increased posi-
tioning techniques and enough CDR types released, CDR
can keep almost the same spatiotemporal granularities.



Obtaining such data requires cellular operators with better
openness and addressing non-technical issues such as
privacy and security.

• Can mobility reconstruction models perform better?
Inferring missing mobility data from CDR captured is
quite a useful data preliminary practice and does not
receive enough attention, as discussed in Section III. The
current relevant techniques, including ours, mainly utilize
the repetitive human mobility patterns. Mobile informa-
tion can be extracted from CDR and may contribute to
mobility reconstruction. For instance, with multiple CDR
types, one can reasonably expect having coarse-grained
long-term mobility information of users and finer-grained
short-term mobility information of the same users only in
some partial observing periods. No existing work studies
how to assess the long-term mobility reconstruction prob-
lem using such mixed information. Besides, recovering
a user’s trajectories may benefit from knowing similar
trajectories of other users.

• How to improve human mobility predicative mod-
els? Forecasting future human whereabouts is one of
the most important topics of human mobility investiga-
tion [10, 11]. So far, relevant studies have covered a
variety of techniques such as Markov chains, time series
analysis, Naive Bayes, Nonparametric Bayesian infer-
ence, and even artificial neural network, considered from
single-user models to aggregated models, and analyzed
both theoretical and practical predictability of individual
mobility. However, there is still a research direction that is
nearly untouched, i.e., leveraging contextual information
into mobility prediction. For instance, when working with
locations, mobile network traffic (e.g., data traffic as in
Section V-B) also described by CDR and can contribute
to mobility prediction. We believe that more context data
(e.g., points of internet, web browsing, and environment
of mobile devices) have such power to be discovered.
Moreover, as collecting such data requires deeper mobile
device integration and collaboration, there is a huge space
of possible fog computing applications.

Consequently, in this paper we surveyed the literature on
utilizing CDR into human mobility studies, and provided the
major takeaways in terms of CDR data mining, along with
open research directions.
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