Takeaways in Large-scale Human Mobility Data Mining

Guangshuo Chen, Aline Carneiro Viana, and Marco Fiore

Human Mobility Investigation

Human Mobility Investigation

1. Data collection

Operator (CDR), App + Volunteers, WiFi, ...

2. Data preliminary/processing

3. Data utilization

PredictionReconstructionCharacterization

PagingCachingResource allocation

How to Obtain 100K Users' Locations?

WiFi? App + Volunteers? No! Only CDR!

- (Legacy) Call Detail Records
- (Now) Charging Data Records
 - 3GPP TS 32.240
 - Calls, SMS, data sessions, mobility updates, on/off, ...
 - Necessary for billing
 - Large populations

CDR Data

Phone	Time	Location	
User ID 1	2015-01-01 06:47:56	(19.028, -98.209)	Payload of communication events
User ID 1	2015-01-01 08:23:08	(18.993, -98.202)	
User ID 2	2015-01-02 16:59:34	(19.025, -98.217)	

How to Obtain 100K Users' Locations?

from CDR datasets?

- Collaboration
 - Operators
 - Data companies
 - Researchers

Internet!

- Publicly available datasets
- Where to find?

Publicly Available CDR datasets

- Data competitions
 - Orange D2D 2013
 - TIM Big Data Challenge 2015 GDPR

- flowminder.org, South Africa
- dandelion.eu, Milan, Italy
- (Chinese) kesci.com Big Data Competitions
 - 2016-2017, China Unicom, Shanghai, 642K users (2016), 1 weeks
- (Chinese) zidex.com, China Mobile, Hangzhou, 7K users, 1 month

Data Preliminary Is Always Required

- Imperfectness
 - temporal heterogeneity
 - abnormalities

Data Preliminary: Common Practices

- Extract location coordinates
- Filter out "bad" users
- Reduce resolutions
- Segment observing periods
- Correlate with mobility loss
- Perform controlled experiments
- Fill spatiotemporal gaps

Extract Location Coordinates

- Locations in CDR
 - Geographical coordinates
 - Cell tower IDs (extraction required)

MCC-MNC-LAC-CID

- Reliable cell tower locations
 - France OpenData, www.data.gouv.fr
- Crowdsensing, third-party services
 - OpenCelliD, Google Geolocation, Unwired Labs, OpenSignal, and Mozilla Location Service

Unwired Labs

Filter Out Users

- Shrinking user population
 - 6M -> 100K
 - Gonzalez et al. "Understanding individual human mobility patterns," Nature, 2008
 - 10M -> 50K
 - Song et al. "Limits of predictability in human mobility," Science, 2010
 - 1M -> 700
 - Hoteit et al. "Estimating human trajectories and hotspots through mobile phone data." Computer Networks, 2014
- To cut off, to let go, and to move on

Collaborate with Mobility Loss

- Location
 - Cell coverage
 - Repetitiveness
 - Categories
- Individual
 - Displacement
 - Travelled distance
 - Radius of gyration

- Location
 - Cell coverage
 - Repetitiveness
 - Categories
- Individual
 - Displacement
 - Travelled distance
 - Radius of gyration

- Location
 - Cell coverage
 - Repetitiveness
 - Categories
- Individual
 - Displacement
 - Travelled distance
 - Radius of gyration

- Location
 - Cell coverage
 - Repetitiveness
 - Categories
- Individual
 - Displacement
 - Travelled distance
 - Radius of gyration

- Location
 - Cell coverage
 - Repetitiveness
 - Categories
- Individual
 - Displacement
 - Travelled distance
 - Radius of gyration

- Location
 - Cell coverage
 - Repetitiveness
 - Categories
- Individual
 - Displacement
 - Travelled distance
 - Radius of gyration

- Location
 - Cell coverage
 - Repetitiveness
 - Categories
- Individual
 - Displacement
 - Travelled distance
 - Radius of gyration

$$RG_{\text{time}} = \sqrt{\frac{\sum_{k=1}^{N} s_k \cdot (\mathbf{r}_k - \mathbf{r}_{\text{cm}}^{\text{time}})^2}{\sum_{i=1}^{N} s_i}},$$

Case Study: Next-location Prediction

- Dataset: CDR (voice calls), ~1M users, 15 months
- User filtering:
 - Metropolitan area
 - Radius of gyration < 32km (urban, peri-urban)
 - Completeness > 20%
 - Weekdays only
 - Three or more unique locations
 - Data traffic > 1KB/day
 - Active days > 150 days
- Users of study: 7K
- Travel history: >150 days for each user

• Problem:

$$\hat{l}_t = \arg \max_{l \in \text{Cells}} P(L_t = l | l_{t-1}, l_{t-2}, \cdots)$$

- Accuracy Percentage of correct predictions
- Theoretical predictability
 - Entropy + Fano's inequality => Accuracy upper bound
- **Practical** predictive models
 - PPM: Prediction by partial matching
 - MLP: Multi-layer perceptron

How to Improve Next-location Prediction?

- Still from travel history?
- (2006) Markov Chain, Text Compression Algorithms
 - Song, Libo, et al. "Evaluating next-cell predictors with extensive Wi-Fi mobility data." *IEEE Transactions on Mobile Computing* 5.12 (2006): 1633-1649.
- (2010) Matrix/Tensor Factorization
 - Zheng, Vincent Wenchen, et al. "Collaborative Filtering Meets Mobile Recommendation: A User-Centered Approach." AAAI. Vol. 10. 2010.
- (2012) ARIMA models
 - Li, Xiaolong, et al. "Prediction of urban human mobility using large-scale taxi traces and its applications." *Frontiers of Computer Science* 6.1 (2012): 111-121.

• (2016) Non-parametric Bayesian + MCMC

- Jeong et al. "Cluster-aided mobility predictions." *INFOCOM 2016,* IEEE, 2016.
- (2016) Recurrent Neural Networks
 - Liu, Qiang, et al. "Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts." *AAAI*. 2016.

New techniques are limited

• Travel history + Context + Deep learning

Questions about mobility data processing?

guangshuo.chen@gmail.com