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Human Mobility Investigation

1. Data collection
Operator (CDR), App + Volunteers, WiFi, ...
2. Data preliminary/processing

3. Data utilization

[“Prediction | [+Paging
|*Reconstruction | {eCaching

»Characterization:

*Resource allocation
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How to Obtain 100K Users’ Locations?

WiFi? App + Volunteers? No! Only CDR!

* (Legacy) Call Detail Records
e (Now) Charging Data Records
e 3GPP TS 32.240

e Calls, SMS, data sessions,
mobility updates, on/off, ...

* Necessary for billing
e | arge populations
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CDR Data
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How to Obtain 100K Users’ Locations?

from CDR datasets?

e (Collaboration
- Operators
- Data companies
- Researchers

e Internet!

* Publicly available
datasets

e \Where to find?




Publicly Available CDR datasets

Data competitions

Orange-b2b2013

TIM Big-Data Challenge 2015 (IDIPR.
flowminder.org, South Africa

dandelion.eu, Milan, Italy

(Chinese) kesci.com Big Data Competitions

2016-2017, China Unicom, Shanghai,
642K users (2016), 1 weeks

(Chinese) zjdex.com, China Mobile,
Hangzhou, 7K users, 1 month
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Data Preliminary Is Always Required

* |mperfectness
e temporal heterogeneity
e abnormalities

Number of users ( x10*




Data Preliminary: Common Practices

e Extract location coordinates
e Filter out “bad” users

* Reduce resolutions

e Segment observing periods

e Correlate with mobility loss
 Perform controlled experiments
e Fill spatiotemporal gaps
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Extract Location Coordinates

e | ocations in CDR
- Geographical coordinates
- Cell tower IDs (extraction required)
» MCC-MNC-LAC-CID
* Reliable cell tower locations
- France OpenData, www.data.gouv.fr
 Crowdsensing, third-party services

- OpenCelliD, Google Geolocation,
Unwired Labs, OpenSignal, and Mozilla
Location Service
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Filter Out Users

e Shrinking user population
e 6M -> 100K

* Gonzalez et al. "Understanding individual human mobility
patterns,” Nature, 2008

e 10M -> 50K

* Song et al. "Limits of predictability in human mobility,” Science,
2010

e 1M -> 700

e Hoteit et al. "Estimating human trajectories and hotspots through
mobile phone data." Computer Networks, 2014

e To cut off, to let go, and to move on
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Collaborate with Mobility Loss

Entropy
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Before Filtering: Mobility Measurement

e Location

e Cell coverage

e Repetitiveness

e (Categories

e |ndividual

* Displacement
 Travelled distance
 Radius of gyration
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Before Filtering: Mobility Measurement

Location .
e Cell coverage i
* Repetitiveness
o (Categories
Individual R
e Displacement
* Travelled distance
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Before Filtering: Mobility Measurement

* Location
» Cell coverage T .
* Repetitiveness .
e Categories S oy

+ Individual 072 N~
» Displacement N
e Travelled distance o v

L-th most visited location

 Radius of gyration
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Before Filtering: Mobility Measurement

e Location

e Cell coverage

e Repetitiveness

e Categories

e |ndividual

e Displacement
 Travelled distance
 Radius of gyration
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Before Filtering: Mobility Measurement

e Location
e Cell coverage
e Repetitiveness
e (Categories

e |ndividual

* Displacement R = J iy st~ (rx = riR)?
. Zi;l Si |

 Travelled distance

e Radius of gyration
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Case Study: Next-location Prediction

e Dataset: CDR (voice calls), ~1M users, 15
months

e User filtering:
e Metropolitan area
 Radius of gyration < 32km (urban, peri-urban)
e Completeness > 20%

* Weekdays only
e Three or more unique locations

 Data traffic > 1KB/day
* Active days > 150 days

e Users of study: 7K
 Travel history: >150 days for each user
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Problem:

Zt — argléncaeﬁsp(l}t = l|l_1,l4_9, )

Accuracy Percentage of correct predictions
Theoretical predictability

Entropy + Fano’s inequality => Accuracy
upper bound

Practical predictive models
PPM: Prediction by partial matching
MLP: Multi-layer perceptron
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How to Improve Next-location Prediction?

e Still from travel history?
e (2006) Markov Chain, Text Compression Algorithms

e Song, Libo, et al. "Evaluating next-cell predictors with extensive Wi-Fi mobility data." IEEE
Transactions on Mobile Computing 5.12 (2006): 1633-1649.

e (2010) Matrix/Tensor Factorization

* Zheng, Vincent Wenchen, et al. "Collaborative Filtering Meets Mobile Recommendation: A
User-Centered Approach." AAAI. Vol. 10. 2010.

e (2012) ARIMA models

* Li, Xiaolong, et al. "Prediction of urban human mobility using large-scale taxi traces and its
applications." Frontiers of Computer Science 6.1 (2012): 111-121.

e (2016) Non-parametric Bayesian + MCMC

* Jeong et al. “Cluster-aided mobility predictions." INFOCOM 2016, IEEE, 2016.

e (2016) Recurrent Neural Networks

* Liu, Qiang, et al. "Predicting the Next Location: A Recurrent Model with Spatial and
Temporal Contexts." AAAI. 2016.

* New techniques are limited
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e Travel history + Context + Deep learning

Q

95 (2016) by Jeong et al.

Shared trajectories

l = 'I (2018) Call/SMS
QS AND ar by Gonzalez et al.

‘ (2018) Data Sessions
=~ by us
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Future POIs



hanks.
Questions about mobility data processing?

guangshuo.chen@gmail.com



