
Microarchitectural Characterization of Irregular
Applications on GPGPUs

Tao Zhang
Department of Computer
Science and Engineering

Shanghai Jiao Tong University,
China 200240

tao.zhang@sjtu.edu.cn

Guangshuo Chen
Department of Computer
Science and Engineering

Shanghai Jiao Tong University,
China 200240

cgs.sjtu@gmail.com

Wei Shu
Department of Electrical and
Computer Engineering
University of New Mexico,

USA, NM 87131
shu@ece.unm.edu

Min-You Wu
Department of Computer
Science and Engineering

Shanghai Jiao Tong University,
China 200240

mwu@sjtu.edu.cn

ABSTRACT
In recent years, GPGPUs have experienced tremendous growth
as general-purpose and high-throughput computing devices.
However, irregular applications cannot fully utilize the hard-
ware resource because of their plenty of control-flow diver-
gences, irregular memory accesses and load imbalances. The
lack of in-depth characterization and quantifying the ways
in which irregular applications differ from regular ones on
GPGPUs has prevented users from effectively making use of
the hardware resource. We examine a suite of representative
irregular applications on a cycle-accurate GPU simulator.
We characterize their performance aspects and analyze the
bottlenecks. We also assess the impact of changes in cache,
DRAM and interconnect and discuss the implications for G-
PU architecture design. This work is useful in understanding
and optimizing irregular applications on GPUs.

Keywords
Performance Characterization, Irregular, GPU, Microarchi-
tectural

1. INTRODUCTION
GPUs are very efficient in accelerating regular application-

s [4]. However, many problem domains employ algorithms
that are irregular in nature who exhibit input-dependent
control flow and memory access patterns [2]. In this work,
we characterize and analyze a suite of irregular and regular
applications to show their differences and the performance
bottlenecks. Burtscher et al. [2] studied a group of irreg-
ular applications on their control-flow and memory access
irregularity on a GPU. Different with their work, we will
utilize a cycle-accurate simulator to analyze more perfor-
mance aspects. In addition, we’ll assess the sensitivity of
these applications to cache and DRAM latency and band-
width, cache size, and coalescing behavior by modifying the
simulator architectural parameters.

IFIP WG 7.3 Performance 2014, October 7-9, Turin, Italy. Copy-
right is held by author/owner(s).

Table 1: Applications and input characteristics
(#K: number of kernels in applications’ code)
Name Abbr. #K Input

Barnes-Hut
N-body
Simulation

[2] BH 9 64K bodies, 1 time step

Breadth-First
Search

[2] BFS 5

Com-Amazon (327K nodes,
904K edges);
RMAT19 graph(512K nodes,
2048K edges);

Delaunary Mesh
Refinement

[2] DMR 4
32K triangles;
64K triangles;

Minimum
Spanning Tree

[2] MST 7 same as BFS

Points-to
Analysis

[2] PTA 40
VIM 246K pointers,
108K constrains

Single-Source
Shortest
Paths

[2] SSSP 2 same as BFS

Survey
Propagation

[2] SP 3
42K clauses, 10K literals,
3 literals per clause

Traveling
Salesman
Problem

[2] TSP 3
kroE100(100 cities,
200K climbers)

N-queens [1] NQU 1 13 (the size of the problem)

Binomial
Options

[3] BO 1 default

Coulombic
Potential

[1] CP 1
2000 atoms on a 256×512
grid

2. EXPERIMENTAL SETUP
This section describes the applications, their inputs and

the simulator used in the evaluation.

2.1 Applications
We characterize nine irregular applications including Trav-

eling salesman problem [4], N-queens solver in the GPGPU-
Sim sample applications [1], and all seven irregular applica-
tions in the latest LonestarGPU benchmark suit 2.0 [2]. In
addition, we also evaluate two regular applications Binomial
Options from CUDA SDK 4.2 [3] and Coulombic Potential
from GPGPU-Sim sample applications [1] for comparison.
The characteristics of the applications and their inputs are
summarized in Table 1.

Performance Evaluation Review, Vol. 42, No. 2, September 2014 27



Figure 1: Average warp occu-
pancy

Figure 2: Cycles breakdown Figure 3: Average access count

Figure 4: Cache miss rate Figure 5: Instructions per cycle Figure 6: Input sensitivity

2.2 Simulator
The cycle-accurate GPGPU-Sim simulator [1] 3.2.1 and

CUDA SDK 4.2 [3] (the highest version of CUDA that GPGPU-
Sim supports) are adopted to execute the selected applica-
tions. An Nvidia GTX480 GPU (Fermi architecture) is sim-
ulated using the official configuration files in the simulator.

3. RESULTS
In this section, we first run the applications with the de-

fault GTX480 configurations and check their baseline perfor-
mance details. Then we examine applications for dominan-
t performance bottlenecks by varying several architectural
components for memory accessing.

3.1 Characterizing baseline performance
Control-flow divergence is a common and major issue that

degrades GPUs’ performance. The average warp occupan-
cy (number of active threads) can describe the intensity of
control-flow divergences. Figure 1 plots the average warp
occupancy of issued cycles and all cycles (issued cycles plus
stall cycles), respectively. Compared to regular applications,
irregular applications obtain a lower average warp occupan-
cy in issued cycles. In addition, irregular applications with
lots of stall cycles such as SP and MST have an even low-
er average warp occupancy for all cycles due to the lack of
instruction-level parallelism or data-level parallelism.

Load imbalance is another problem that impairs system
performance. Figure 2 plots the breakdown of applications’
cycles. There is a special category ”issued-load-imbalance”
to identify the issued cycles where some warps have longer
execution time than other warps within a same thread block.
There are two observations. First, load imbalance only oc-
cur in irregular applications. Second, irregular application-

s have more stalls on the pipeline load & store units than
regular applications since their irregular memory access pat-
terns produce more un-coalesced memory accesses and pose
pressure on limited number of load & store units.

Irregular, un-coalesced memory accesses underutilize the
load & store units and interconnect bandwidth. Figure 3
plots the average number of memory accesses performed by
each global or local load or store instruction. A value larger
than one illustrates the presence of un-coalesced memory ac-
cesses. SP, TSP, NQU and BH exhibit larger average mem-
ory access count because of their irregular access patterns
and the granularity to access memory.

Figure 4 presents the L1D and L2 cache miss rate of appli-
cations. Both regular and irregular applications have high
cache miss rate, especially on the small L1D cache. The
high miss rate is the result of un-coalesced memory accesses
on GPUs and the memory access patterns of active threads
who do not exploit spatial locality.

Figure 5 shows the overall performance in terms of in-
structions per cycle (IPC) for each application. We can see
that regular applications BO and CP have higher IPC than
irregular applications. The reason is that regular applica-
tions have less code branches and more coalesced memory
accesses. Consequently, they achieve a higher utilization on
the GPU computing resource.

Figure 6 presents the cycles breakdown for BFS, MST and
SSSP with the first and the second input(see Table 1). There
is a significant difference in the breakdown since the branch-
es and memory accesses of these irregular applications are
input-dependent.

3.2 Application bottleneck analysis
Figure 7 shows the applications’ normalized performance

28 Performance Evaluation Review, Vol. 42, No. 2, September 2014



Figure 7: Impact of memory ac-
cess latency on performance

Figure 8: Impact of cache size on
performance

Figure 9: Impact of bandwidth
on performance

under halved DRAM latency and L2 cache latency. The per-
formance is normalized to that with un-modified simulator
configurations. We can see that applications are more sensi-
tive to the decreasing of L2 cache latency. Besides, irregular
applications achieve larger performance improvements than
regular applications. The Figure also presents the perfor-
mance of an ideal system with ”no latency”.

Figure 8 presents the applications’ normalized performance
under double-sized L2 cache or L1D cache. On one hand,
both regular and irregular applications can benefit from en-
larged caches. On the other hand, their performance increas-
es more significantly with enlarged L1D cache than with
bigger L2 cache.

Figure 9 shows the applications’ normalized performance
when we change the bandwidth (BW) of the DRAM or
the interconnection. The results show that applications are
more sensitive to the increased bandwidth of the intercon-
nect instead of the DRAM. A wider interconnect can carry
memory access requests and replying data at a higher speed.

In summary, irregular applications are more sensitive to
the changes of L2 latency and interconnection bandwidth
than that of DRAM latency and bandwidth.

3.3 Summary analysis
In this subsection, we discuss each irregular application

based on the results in previous two subsections.
BH: The tree-building kernel suffers from too many syn-

chronization barriers, atomic operations, and imbalanced
work due to different depth of the octree branches.

BFS: This kernel suffers from a huge number of LSU stalls
due to its low compute to memory access ratio. In addi-
tion, its vertex-centric computing incurs significant branch
divergences and load imbalances since vertices have different
degrees.

DMR: There is a significant performance penalty in the
refinement kernel since the handling of irregular graphs in-
curs a lot of memory access stalls and divergences.

MST: The dominant kernel adopts the vertex-centric mod-
el and each thread loops over its node’s neighbors. As a
result, there are lots of branch divergence, data hazards (s-
coreboard) and control hazards.

PTA: This kernel operates on a dynamically growing constraint-
graph in which directed edges are added. Therefore, branch
divergences and irregular memory accesses are unavoidable.

SSSP: This kernel has the same issue as BFS and MST.
SP: This kernel traverses a random input graph which in-

curs irregular and un-coalesced memory accesses. It further

suffers from control hazard idle cycles due to the very short
and irregular loop structures.

TSP: This kernel suffers from load imbalance and irreg-
ular memory accesses since threads within a warp take dif-
ferent cycles to find a local minimum. Fast threads/warps
have to wait before they can move on to a new tour.

NQU: This kernel suffers from branch divergences, load
imbalances and irregular memory accesses since each thread
searches for a different sub-problem space for valid place-
ments of N-queens.

4. CONCLUSION
The experiment results in this paper manifest that, com-

pared to regular applications, irregular applications have
lower average warp occupancy, more stalls at the scoreboard
and the load & store units and exhibit load imbalances. Fur-
ther experiments on tuning architectural components man-
ifest that we can improve the performance of irregular ap-
plications more effectively by decreasing L2 access latency,
enlarging L1D capacity and increasing the bandwidth of the
interconnect.

Acknowledgment
The authors would like to thank anonymous reviewers for
their fruitful feedback and comments. This research was
supported by NSF of China under grant No. 61373155.

5. REFERENCES
[1] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and

T. M. Aamodt. Analyzing cuda workloads using a
detailed gpu simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pages 163–174. IEEE,
2009.

[2] M. Burtscher, R. Nasre, and K. Pingali. A quantitative
study of irregular programs on gpus. In Workload
Characterization (IISWC), 2012 IEEE International
Symposium on, pages 141–151. IEEE, 2012.

[3] C. Nvidia. Sdk code samples.

[4] M. A. ONeil, D. Tamir, and M. Burtscher. A parallel
gpu version of the traveling salesman problem. In 2011
International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 348–353,
2011.

Performance Evaluation Review, Vol. 42, No. 2, September 2014 29


	p27-29_027_Final
	p27-29_028_Final
	p27-29_029_Final

